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FOREWORD

The third annual Space and Earth Science Data Compression Workshop was held on April 2,
1993 in Snowbird, Utah. This NASA Conference Publication serves as the proceedings for the

workshop. The workshop was held in conjunction with the 1993 Data Compression Conference
(DCC'93), which was held at the same location March 30 - April 2, 1993.

The goal of the Space and Earth Science Data Compression Workshop series is to explore the
opportunities for data compression to enhance the collection and analysis of space and Earth
science data. Of particular interest is research that is integrated into, or has the potential to be

integrated into, a particular space and/or Earth science data information system. Participants are
encouraged to take into account the scientist's data requirements, and the constraints imposed by
the data collection, transmission, distribution and archival system.

Papers were selected from submissions to the 1993 Data Compression Conference (DCC '93),
and from a limited number of submissions directly to the Workshop. Eleven papers were

presented in 4 sessions. Discussion was encouraged by scheduling ample time for each paper,
and through scheduled discussion periods at the end of each session.

The workshop was organized by James C. Tilton of the NASA Goddard Space Flight Center,
Sam Dolinar of the Jet Propulsion Laboratory, Sherry Chuang of the NASA Ames Research
Center, and Dan Glover of the NASA Lewis Research Center. Contact information is given
below.
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Abstract. The Earth Observing System Data and Information System (EOSDIS) is described in
terms of its data volume, data rate, and data distribution requirements. Opportunities for data
compression in EOSDIS are discussed.

1. Introduction

The Earth Observing System Data and Information System (EOSDIS) is being developed by the
National Aeronautics and Space Administration (NASA) to be a comprehensive data and
information system providing the Earth science research community with easy, affordable, and
reliable access to Earth Observing System (EOS) and other appropriate Earth science data. The
EOS program, as a part of the Mission to Planet Earth is intended to study global-scale processes
that shape and influence the Earth [1, 2, 3]. Beginning in 1998, EOSDIS will archive
approximately one terabyte of data per day over a 15 year period [4, 5, 6, 7]. Many opportunities
for data compression exist in EOSDIS for alleviating problems due to large data volumes, high
bandwidth requirements, and data access requirements.

2. EOSDIS Requirements

There are 5 proposed EOS instruments on the EOS AM-1 spacecraft to be launched in June
1998 and 6 proposed EOS instruments on the EOS PM-1 spacecraft to be launched in December
2000. These instruments will generate data at a rate of 281 gigabytes per day [8]. Other
instruments will follow on spacecraft to be flown later. Data from the EOS instruments will be

transferred to an EOS Data and Operations System (EDOS), from where data will be batched to
an appropriate Distributed Active Archive Center (DAAC), selected with responsibility for
further processing. The Product Generation System (PGS) located at the DAACs will generate
higher level products (LI through L4) for storage in the Data Archive and Distribution System

(DADS). The data product processing levels are defined as follows:

• L0

,L1A

• L1B

• L2

• L3

• L4

Raw instrument data at original resolution, time ordered, with duplicate packets
removed

L0 data, which may have been reformatted or transformed reversibly, located to a
coordinate system, and packaged with need ancillary and engineering data

Radio metrically corrected and calibrated data in physical units at full instrument
resolution as acquired

Retrieved environmental variables (e.g. ocean wave height, soil moisture, ice
concentration) at the same location and similar resolution as the L-1 source data

Data or retrieved environmental variables that have been spatially and/or
temporally resampled (i.e., derived from LI or L2 data products) and may include
averaging and compositing

Model output and/or variables derived from lower level data which are not
directly measured by the instruments such as new variables based upon time
series of L2 or L3 data

3
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Generation of these higher level data products will expand total data volume by a factor of 3.3,
resulting in a total data volume from the AM-1 and PM-1 platforms of approximately 0.9
terabytes per day.

The sustained combined daily rate for data input into EOSDIS from the AM-1 and PM-1

platforms will be 26 megabits per second. The sustained daily rate for data access into and from
the DADS will, however, be substantially larger to accommodate, in addition to the initial data

processing, subsequent data reprocessing and data distribution to users.

A distributed Information Management System (IMS) will be implemented to provide a common
user interface to database management systems at the DAACs, providing the capability to easily

construct complex queries to search, locate, select, and order products. The IMS will be sized to
accommodate 100,000 users. A load of 100 concurrent IMS sessions will be distributed across
the DAACs. Approximately 500 IMS queries per hour can be expected for log-on authorization,

directory search, catalog search, inventory search, status checks, browse selection, document
search, and ordering services.

EOSDIS will be capable of distributing data via physical media and via communications

networks, each at a rate equivalent to approximately 1 terabyte per day. Data requested on
physical media will be made available for delivery within 24 hours and data requested over
networks will be available to the network within an average of 5 minutes.

3. Data Compression Opportunities

Conventional lossless compression techniques such as Huffman coding, Ziv-Lempel
compression, and arithmetic coding have been shown to be very effective at compressing a wide
range of data types with compression ratios of approximately 2:1 [9, 10, 11]. The potential cost
savings to the EOSDIS data archive facility due to reduction of hardware for data storage is
obvious. Perhaps less obvious is also a concomitant reduction in requirements for bandwidth of
storage devices. To be most effective, however, compressed data needs to stay in its
compressed form as long as possible, so that data is not needlessly decompressed and then re-
compressed, and so that the potential savings in network bandwidth are not lost. This requires
standardization on a common set of data compression schemes, on associated common data

format structures, and on common compression/decompression tool kits that are integrated across
all of EOSDIS. For example, callable routines that decompress a block or record at a time, would
be essential to PGS, as would routines that decompress data at user workstations.

Lossy compression techniques such as DCT, wavelet transform, and vector quantization [12, 13,
14] can play a significant role in optimizing data access by providing tools for storage and
retrieval of display quality browse data. EOSDIS will permit users to browse subsetted,
subsampled and/or summarized data sets that are created during routine production processing.
These browse data sets will be generated by algorithms provided by scientists. Since some of
these browse products are designed for visual display, they may be further compressed by lossy
compression techniques that can have significantly higher compression ratios than lossless
techniques. Because EOSDIS needs to retrieve and begin to display these browse data sets
within one minute, they need to be stored on faster access devices than other data. The associated
reduction in bandwidth requirements due to data compression could aid in reducing costs.

More innovative lossy/lossless techniques, such as progressive vector quantization [15], have the

potential for allowing browse quality lossy compression, while also allowing lossless restoration
of full datasets. Such combined techniques can benefit from the best features of both and can
result in reduced total I/O requirements and better compression ratios. To be most useful, these
techniques require standardization on a common format structure that allows storage of the
browse component on a fast access device and storage of the complementary lossless data



componenton a slower accessdevice.Unfortunately, however,datacompressiontechniques
suchasvectorquantizationareextremelyprocessorintensive,althoughthedecompressionphase
is muchlessso.Thebenefitsof reducedI/O andhighercompressionneedto bebalancedagainst
thecompressioncostandtheimpactof thatcoston thePGSdesign.

Finally, the conceptof using very large codebooksto achievevery high compression,both
losslessand lossy, althoughstill unproven,haspotential for successin extremely large data
archivessuchasthoseplannedin EOSDIS. Fundamentalissuesneedto be investigatedthat
exploretheredundancy,andhencecompressionlimit, of thesedataarchives,the stability of the
resultantcodebooks,andthemosteffectivemethodfor thegeneration,storageandexchangeof
thosecodebooks.
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Abstract. Economical archival and retrieval of image data is becoming increasingly important
considering the unprecedented data volumes expected from the Earth Observation System (EOS)
instruments. For cost effective browsing the image data (possibly from remote sites), and
retrieving the original image data from the data archive, we suggest an integrated image browse
and data archive system employing incremental transmission.

We produce our browse image data with the JPEG/DCT lossy compression approach. Image
residual data is then obtained by taking the pixel by pixel differences between the original data
and the browse image data. We then code the residual data with a form of variable length coding
called diagonal coding.

In our experiments, the JPEG/DCT is used at different quality factors (Q) to generate the browse
and residual data. The algorithm has been tested on band 4 of two Thematic Mapper (TM) data
sets. The best overall compression ratios (of about 1.7) were obtained when a quality factor of
Q=50 was used to produce browse data at a compression ratios of 10 to 11. At this quality factor
the browse image data has virtually no visible distortions for the images tested.

1. Introduction

Economical archival and retrieval of image data is becoming increasingly important considering
the unprecedented data volumes expected from the Earth Observation System (EOS)
instruments. The challenges EOS present to the information scientist are providing a cost
effective mechanism for: (i) browsing the image data (possibly from remote sites), and (ii)
obtaining the original image data from the data archive. We suggest that these two mechanisms
be integrated, i. e., the lossless image data should be reconstructed from the browse image data
by incremental transmission.

The data archive's integrity is maintained as long as every bit of the original image data can be
reliably reconstructed from compressed form without loss. Nevertheless, lossless compression is

not very effective in reducing data volume. Maximum compression ratios of 2.0 to 2.5 are
typical for the type of image data expected from EOS instruments. Lossy compression, on the
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other hand,can typically providecompressionratiosof ashigh as30 to 50 without significant
visible degradationof the imagedata. However,becausethe original imagedatacannot be
perfectly reconstructedfrom this highly compresseddata,it canonly beusedfor databrowsing
and,possibly,certainpreliminaryanalysis.

In most dataarchive schemes,highly compresseddatais kept in on-line storageand usedto
efficiently browsethe data to determinepotentially useful data set(s)for further processing.
Once this decision is made,the original data is obtainedfrom off-line storage. The browse
quality image dataand the correspondingoriginal imagedatacontain redundantinformation,
causingafractionof the informationto be transmittedtwice.

If incrementaldata is storedoff-line insteadof original data,datatransmissionto userscan be
mademoreefficient. In this approachtheimagedatais decomposedinto browseandresidueso
information is not duplicatedeither in data archival or in transmissionto usersacrossthe
computernetworks.

In this paperwe addresstheproblemof decomposingimagedatainto browseandresidualdata
in a mannerthat is most appropriatefor imagedataarchival. Browsedatashouldtake only a
smallfraction (typically 1/30to 1/50)of thestoragerequiredfor original datawith quality thatis
adequatefor decidingwhetherthedatais usefulor not for an intendedapplication. Theresidual
data, normally kept off-line, should have relatively high compressibility using a carefully
designed losslesscompressiontechnique. Thus, the key problems are to select a lossy
compressionapproachthat providesthe bestcompressionwith quality that is nearly lossless
visually, and to select the most effective losslesscompressionapproachfor the residual. In
addition,we also determinethe browsedata compressionratio that leadsto the best overall
compression.

2. JPEG/DCT Approach for Browse Quality Image Generation

Any of several lossy compression techniques, such as subband/wavelet coding and vector
quantization, could be used to produce the browse quality image. We chose to use the
JPEG/DCT lossy compression approach for the following reasons.

i. The JPEG/DCT lossy compression approach has become an industry-wide standard
compression approach.

ii. Special hardware boards are available commercially for various machines including the
ubiquitous IBM/PC.

iii. The image quality of the browse data can be fine tuned until it is visually lossless.

JPEG lossy compression is based on the Discrete Cosine Transform (DCT) of 8x8 blocks of the
input image [1-2]. In the encoding process, the samples in the input image are grouped into 8 x
8 blocks, and each block is transformed by the forward DCT (FDCT) into a set of 64 coefficients
referred to as the DCT coefficients. The first coefficient corresponds to the DC coefficient, and
the remaining 63 are AC coefficients. Each of the AC coefficients is then quantized using one of
64 corresponding values from a quantization table. The DC coefficients of different blocks
undergo differential coding. The AC coefficients are then ordered by a one-dimensional zigzag
sequence. Finally, the quantized coefficients are compressed using either a Huffman table or
arithmetic coding.

The baseline JPEG/DCT accepts 8-bit images and uses two Huffman tables for coding DC and
AC coefficients. However, the other JPEG lossy standards allow 8-bit to 12-bit precisions with

either Huffman or arithmetic coding of coefficients. At the decoding end the 64 coefficients are
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usedto reconstruct8 x 8 coefficient image which then is mapped back to image space by Inverse
DCT (IDCT).

JPEG/DCT approach provides a fine tuning factor, Q, which corresponds to different qualities of
the compressed images. For typical NASA image data, a low value of Q, such as 20, provides
high compression with poor image fidelity. As the Q factor increases the fidelity improves at the
expense of compression ratio. For Q = 80, the compressed images are generally visually
indistinguishable from the input images, with a compression ratio typically in the range of 6.0 to
7.0. For data from the Landsat TM instrument, a general image quality rating for different Q

values and corresponding compression ratios (CR) is:

Q CR Image Quality

25 - 40 25 - 12
40 - 70 12 - 8
70 - 80 8 - 6
80 - 90 6 - 4

moderate to good quality
good to very good quality

excellent quality
indistinguishable from original

Several EOS instruments are expected to have a dynamic range of 0 - 4095, that is, the pixel
brightness level can be represented by 12 bits. However, the human perceptual system cannot
even resolve 256 gray scale levels (i. e., a range of 0 - 255), which can be represented by 8 bits.
Therefore, the first stage of producing the browse data can be described as follows: Determine
the actual dynamic range of the data (which can be less than, but no more than 12 bits), and
retain only the 8 most significant bits in that dynamic range. Then compress this 8-bit data with
JPEG/DCT at the optimal quality factor. For lossless compression, the remaining bits, as well as
the residual from JPEG compression are separately compressed using an appropriate lossless
compression approach. Such an approach is described in the following section.

3. Residual Compression using Diagonal Codes

Residual image data is that which is obtained through taking the pixel by pixel differences
between the original data and the image reconstructed after lossy compression. We have
observed that the residual image data obtained from JPEG/DCT compression is low entropy data
that is compressible to a greater degree than the original image data. The better the browse data
approximates the original data, the more compressible is the residual image data. Thus, a better
quality browse results in a residual that can be compressed better in lossless mode.

However, a better quality browse image requires more bits per pixel. Since the overall lossless
representation is sum of the bits per pixel for browse data and residual data, producing maximum
overall lossless compression requires finding the optimal balance between the bits allocated to
the browse data and the bits consequently required for the residual data.

For remote browsing applications, the browse data bit rate (bits/pixel) must be kept very low to
ensure efficient transmission of the data across the computer networks. This requirement leads
to choosing the lowest JPEG_CT quality factor without significant visual degradation of the
reconstructed image data, which we have found to be a quality factor of about 50. Fortunately,
our experiments have found that a quality factor of about 50 also corresponds closely to the
browse bit rate that produces the optimal overall lossless compression in combination with the

residual image data.

The residual image data exhibits a Laplacian distribution with a smaller variance of data values
than the original image data. This property suggests that a form of variable length encoding

9



wouldbemostappropriatefor losslesscompressionof thisdata. We havefoundspecificallythat
atypeof variablelengthencoding,calleddiagonalcoding[3,4], is mostappropriate.

For imageswith n bits/pixel, straightforward representation of the residual image data requires
n+l bits. However, through using Golomb codes [5], the residual data requires just n bits/pixels
(prior to diagonal coding).

In our approach, the residual image data is divided into two parts. The first part contains the
lower order two bits, while the second part contains the remaining higher order six bits. The
frequency distribution of the lower order bits exhibits no particular structure, and thus can be
compressed very little. However, the frequency distribution of the higher order bits exhibits a
narrow Laplacian distribution. For this type of distribution, Rice, et. al., [3] have shown the
diagonal code is asymptomatically optimal. In this code, each value is represented by number of
zeros corresponding to that value, terminated by a one. For six bit data, the diagonal code for
"000101" is "000001", and the diagonal code for "010100" is "_1."

Since higher values in the residual data occur less frequently, this code turns out to be optimal.
This representation is very efficient for coding as well as decoding.

The diagonal code we propose is as follows. The frequency distribution is divided into sets of
four pixels centered about the zero axis such that each set contains two negative and two positive
residual values except the first one that contains zero. If the residual value belongs to set 1, it is
represented by 1, if the value belonged to set 2, it is represented by 01, if the value belongs to
set 3, it is represented by 001, and so on. In general, if the residual value belongs to i m set, the
representation is series of i-1 zeros followed by 1. Typical sets and their representations are
shown below:

Set R_&0_gg Diog0nalcod_

1 (-I,0,1,2)

2 (-2,-3,2,4)
3 (-5,-4,5,6)
4 (-7,-6,7,8)
5 (-9,-8,9,10)
6 (-11,-10,11,12)
7 (-13,-12,13,14)
8 (-15,-14,15,16)
9 (-17,-16,17,18)
10 (-19,-18,19,20)
11 (-21,-20,21,22)
12 (-23,-22,23,24)
I3 (-25,-24,25,26)
14 (-27,-26,27,28)
15 (-29,-28,29,30)
16 (-31,-30,31,32)

= 1 followed by two bits for
identification of actual value

=01
= 001
= 0001
= 00001
= 000001
= 0000001
= 00000001
= (K)0(0)0001
= 0000000001
= 00000000001
= 000000000001
= 0000000000001
= 0(O00)O0000001

-- 0_1
= 00OO0O0O000OOO01

4. Experimental Results and Conclusions

We have tested our compression approach on band 4 of Landsat Thematic Mapper Images of
Washington, DC and of Davidsonville, LA (northwest of New Orleans, LA). The browse data
was generated using JPEG/DCT at quality factors of 25, 50, and 75. Table 1 shows the

frequency distribution of residual data at these quality factors:
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Table1. Washington,DC residualdataimagestatistics.

DiagonalCode
Set# 0--50 -£Lz.7_5

1 .3393 .4101 .4911
2 .2556 .2883 .3055
3 .1794 .1686 .1381
4 .1102 .0819 .0487
5 .0599 .0339 .0127
6 .0311 .0118 .0030
7 .0138 .0036 .0005
8 .0060 .0010 .0001
9 .0026 .0002 .00004

The compression performance of the algorithm is summarized in Tables 2 and 3 for the two data
sets we have used in our experiments. For three different Quality factors, the browse
compression ration (CRB), the overall lossless compression (CR), and the ratio of CR to the first
order entropy (CR e) are tabulated. From the table we see that the best compression ratio in
lossless mode corresponds to a quality factor, Q = 50.

Table 2. Washington D.C. (Band 4)

Q CR B CR CR/CR e

25 20.0 1.63 0.972
50 11.6 1.67 0.985
70 7.5 1.64 0.977

Table 3. New Orleans (Band 4)

Q CR B CR CR/CR e

25 16.1 1.599 .9198
50 10.3 1.653 .9901
75 6.9 1.633 .9774

We have described a method of decomposing image data into a browse image and residual

image data for active archival and distribution of data. We have found that a variant of diagonal
code proposed by us gives the best compression ratio for a residual corresponding to the browse
data generated by JPEG/DCT for a quality factor of 50. This quality factor provides browse
quality that has very little visible distortions for the images tested.
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ABSTRACT

A data compression algorithm involving vector quantization (VQ) and the discrete

wavelet transform (DWT) is applied to two different types of multidimensionM digital

earth-science data. The algorithm (WVQ) is optimized for each particular application

through an optimization procedure that assigns VQ parameters to the wavelet trans-

form subbands subject to constraints on compression ratio and encoding complexity.

Preliminary results of compressing global ocean model data generated on a Think-

ing Machines CM-200 supercomputer are presented. The WVQ scheme is used in

both a predictive and nonpredictive mode. Parameters generated by the optimiza-

tion algorithm are reported, as are signal-to-noise ratio (SNR) measurements of actual

quantized data. The problem of extrapolating hydrodynamic variables across the con-

tinental landmasses in order to compute the DWT on a rectangular grid is discussed.

Results are also presented for compressing Landsat TM 7-band data using the WVQ

scheme.The formulation of the optimization problem is presented along with SNR

measurements of actual quantized data. Postprocessing applications are considered

in which the seven spectral bands are clustered into 256 clusters using a k-means

algorithm and analyzed using the Los Alamos multispectral data analysis program,

SPECTRUM, both before and after being compressed using the WVQ program.

I. INTRODUCTION.

This work describes the application of an image compression algorithm involving the

discrete wavelet transform and vector quantization to two problems involving earth science

data. The coding of outputs of supercomputer-generated global climate model (GCM) ocean

simulations and Landsat Thematic Mapper (TM) multispectral imagery is investigated. The

compression algorithm has its origins in the coding of gray-scale imagery [1,2]. A set of vector

quantizers is designed (one for each subband in the wavelet decomposition) with parameters

selected from the solution of an optimization problem that is formulated to minimize quanti-

zation distortion with constraints on the overall bit rate and encoding complexity. Although

both data types considered in this work are of dimensionality higher than two, we restrict

the discussion to coding implementations based on 2-D transforms.

13



Compression of the GCM data is approached by both a straightforward two-dimensional

extension of the earlier algorithm and a predictive scheme in which two-dimensional pre-

diction residuals are coded. The Landsat images are coded by modifying the bit allocation

algorithm to allocate coder resources simultaneously among all of the spectral components.

For all scenarios, measurements of quantization distortion are presented as functions of

compression ratio and encoding complexity, thus revealing tradeoffs involved in the system

design.

II. MULTIDIMENSIONAL \¥AVELET TRANSFORM VECTOR QUANTIZATION.

The data-coding technique used in this work, known as the wavelet-vector quantization

(WVQ) algorithm, is based on vector quantization of the subbands resulting from a discrete

wavelet transform (DWT) decomposition of the data signal. For signals in two or more

dimensions, the transform used is based on product filter banks (i.e., tensor products of

one-dimensional DWT filters). A d-dimensional signal transformed in this manner with a

two-channel filter bank yields 2 d subbands, any of which can be cascaded back through

the filter bank to produce a multirate decomposition of the original signal. Although we are

currently working on three-dimensional wavelet transforms for use with the three-dimensional

climate model data under investigation, the DWT results presented here are restricted to

the case of two-dimensional data fields.

Single-level 2-D DWT analysis and synthesis filter banks are depicted in Figures 1 and

2. The analysis filters (Hi) and synthesis filters (Fi) used in this paper are biorthogonal

linear phase FIR wavelet filters constructed in [3, 4]. Note the use of binary subscripts on

the subbands, aij, to indicate the filters applied to the rows and columns of the signal, x.

Signals obtained from sampling smooth, continuous data fields usually have most of their

energy (or variance) concentrated in the low-frequency part of the spectrum, so it is usually

most efficient to cascade only the lowpass-lowpass filtered subband, a00, back through the

analysis bank in Figure 1; the resulting subband is denoted a00,00, or a,00 for short. This

cascade is typically carried down four levels (or so), to the a,,,oo band, which will then contain

a large portion of the signal energy concentrated in a heavily downsampled signal component.

Note that the downsample factor for an lth-level subband in a d-dimensional scheme using

an M-channel coder is mi = M re, so, e.g., subband a,,,0o in the 2-D decomposition has been

downsampled by rni = 256-to-1.

A further consideration when applying a DWT to finite-duration signals, like the rows or

columns in a digital image, is the handling of boundary conditions. The most straightforward

way of dealing with signal boundaries is to regard the signal as a single period of an infinite,

periodic input and apply the DWT filter bank by circular convolution and downsampling.

This has the disadvantages, however, of introducing a spurious jump discontinuity when the

data isn't inherently periodic and of constraining the signal length (i.e., its "period") to

be divisible by the downsample factor. For a four-level decomposition using a two-channel

filter bank, for instance, this means the input length, No, must be divisible by 16. Both

of these problems can be avoided by using symmetric extrapolation techniques to extend

finite-duration inputs; moreover, this can be done with no increase in the memory allocation

needed to transform or store the input signal [5, 6].

The design of vector quantizers for the subbands in a DWT decomposition is based on
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the assumptionof exponentialVQ rate-distortion characteristics,

= (1)

Di(k_, ri) is the distortion (mean-square error) between the original and quantized data in

the i th subband for a bit rate of r_ bits per pixel (bpp) and a vector dimension of ki. fli(ki)

and 7i(]¢i) are constants that depend on ki and the probability density function of the data

vectors. The motivation for this assumption is based on theoretical VQ rate-distortion

modelling [7] and confirmed by empirical data; values for the constants fl_(ki) and 7;(k,) are

determined from a set of training data.

In the case of an orthogonal subband decomposition, the overall distortion can be ex-

pressed as a weighted sum of the distortion in each subband,

D= _. 1 Di(ki'r_)mi '

where mi is the downsample factor, the ratio of the number of samples in the original to

the number in the i tt_ subband. Since the DWT conserves the number of data samples, rn i

satisfies the identity _m, 7_ = 1. By (1), the overall distortion is

D = _. lfli(k_)e-'Y'(<)_' (2)
t

Fornmla (2) is customarily used as a distortion measure with nonorthogonal transforms, too,

although it no longer coincides exactly with overall mean-square error. The bit-allocation

problem for quantizer design involves using nonlinear optimization techniques to compute

the bit rates, ri, and dimensions,/q, that minimize (2), subject to constraints on overall bit

rate and encoder complexity.

For a target overall bit rate of R bpp, the constraint on subband bit rates is

,'i < n (3)Em--7-.

If subband vector dimensions, hi, are to be optimized, an additional constraint besides

(3) is necessary to obtain a well-posed optimization problem for VQ bit allocation. The

encoder complexity constraint used here is an upper bound, Q, on the computational cost of

performing exhaustive nearest-neighbor searches of ki-dimensional VQ codebooks containing

.A,ri = 2 kit' codevectors:

_< Q (4)

The parameter c_ is a constant corresponding to the arithmetic cost of performing two ad-

ditions and one multiplication per pixel. With the additional constraints ri >_ 0 we obtain a

convex nonlinear optimization problem to solve for the ri; the ki are optimized by a heuris-

tic search procedure. Once optimal bit rates and vector dimensions are computed, optimal

VQ codebooks are constructed from training data using the Linde-Buzo-Gray method [8, 9].

More details about the WVQ algorithm are given in [10, 2, 1, 11].
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III. APPLICATIONTO OCEANMODEL DATA.

This section describesthe useof the WVQ algorithm on synthetic data generatedby
a Bryan-Cox-Semtnerglobal oceancirculation model running on the Connection Madline
CM-200 at the Los Alamos AdvancedComputing Laboratory (ACL) [12, 13]. The model
is computed on a 320x 768 grid at 20 depth levels; boundary conditions are given on a
three-dimensionalbottom topography with 80 islands. The data used in the compression
experimentswas the surface temperature field (no depth components), taken at three-day
intervals overa decade'sworth of simulation. Time-framesfrom the first yearof the simula-
tion wereusedfor training data, and the resultingWVQ algorithm wasthen testedoil frames
from the last year of the simulation, i.e., on data similar but not identical to the training
data. We feel this is a valid test sinceit is similar to the manner in which the algorithm will
be usedin practice.

The two-dimensionMdata framesweretransformedwith a four-leveloctave-scaledDWT
decomposition. Sincethe model is periodic in the east-westdirection, periodic boundary
conditions wereused alongparallels of latitude ("rows"). However,due to ttle lack of con-
tinuity betweenthe north and south edgesof the grid, symmetric (i.e., reflected) boundary
conditions wereused alongmeridiansof longitude ("colunms"). Becausethe DWT is most
easily computed on a rectangular grid, the temperature data was extendedacrossthe con-
tinental landmassesbefore transforming. A simple approachlike zero-paddingof the data
would be undesirablebecauseit would induce a largejump discontinuity around tile coast-
lines; this would show up as addedvariance in the highpass-filteredDWT subbandsand
would therefore reducethe compressibilityof the high-frequencysignal componentsin the
transform domain. For this reasonweuseda continuousextensionof the data givenby linear
extrapolation from coast to coastalong parallelsof latitude. This still leavesa "corner" at
the coastlinesin the extendeddata; since the initial data field is extremely smooth, this
corner results in a slight increasein energyin highpass-filteredsubbands.It is not yet clear
whether this added variance is significant alongsidethe variancenaturally present in the
data. We arecurrently looking into using smoother two-dimensionalextrapolation schemes
for this task.

Two different approacheswere taken to quantizing the time-seriesdata generatedin tile
simulation: nonpredictive and predictive coding. In the nonpredictive scheme,eadl frame
is treated as a separate image and compressedaccordingly using the WVQ method. In
predictive coding, a prediction of eachframe is made basedon past framesand subtracted
from the current frame, resulting in a two-dimensional residual image, which is compressed

and stored. The image sequence is decoded from the first frame in the sequence and tile

residuals. We used a simple first-order predictor in this scheme; i.e., the prediction of a given

frame is just equal to the quantized value of the previous frame. Block diagrams for the

transmitter and receiver in this predictive encoding/decoding system are given in Pigures 3

and 4. The experiment assumed that the first frame in the sequence is transmitted with

nonpredictive quantization, and the compression ratios reported are those of the subsequent

residuals.

For both the nonpredictive and predictive schemes, WVQ coders were designed for bit

rates, R, ranging from 2.0 to 0.25 bpp. Since the original data was 32 bpp, the corresponding

compression ratios range from 16:1 to 128:1. Encoding complexities, Q, were varied between
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Figure 3: Predictive Transmitter.
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Figure 4: Predictive Receiver.

16a and 64a. The optimal codebook sizes and vector dimensions for each combination of R

and Q were computed by the WVQ design algorithm described in Section II. Bit allocation

results for the 13 subbands are presented in Tables I and II for R = 0.5 and 0.25 bpp in

terms of vector dimensions, ki, and codebook sizes, N_. Note that as the bit rate decreases,

the highest frequency subbands are quantized more heavily or discarded altogether and

remaining high-frequency subband vector dimensions typically increase. Vector dimensions

also increase as ttle upper bound on complexity increases. Bit allocation for the residual

subbands in Table II is similar to that for the nonpredictive scheme, although much less of

tlle quantizer resources (i.e., far fewer bits) are allocated to the lower frequency subbands in

tlle predictive scheme. This means that the first-order predictor effectively predicts the low-

wavenumber modes of the model, indicating that these modes are evolving slowly compared

to the sampling rate for archiving data.

Quantizer performance is measured in terms of signal-to-noise ratio (SNR),

2

(dB)SNR = 10 log m
O"e

2 is the quantization error variance. The average SNR2 is tlle signal variance and %where crs

in dB for the test data is shown in Figures 5 and 6 for various values of R and Q. This

diagram illustrates the various tradeoffs involved in the selection of R and Q. At a given bit

rate, R, note that a higher SNR is possible using an encoder with higher complexity, Q; i.e.,

higher subband vector dimensions, k_, and correspondingly larger codebook sizes, Ni. Note
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Table I: Vector Dimension and Codebook Size Assignments (k, N) for R = 0.5 bpp and

R = 0.25 bpp, Nonpredictive Coding.

Subband ,,,00

Subband ,,,01

Subband ,,,10

Subband ,,,11

Subband ,,01

Subband ,,10

Subband ,,11

Subband ,01

Subband ,10

Subband ,11

Subband 01

Subband 10

Subband 11

R = 0.5 R = 0.25

Q=64c_ Q=32_ Q= 16(_ Q=64c_ Q=32_ Q= 16_

(1,511) (1,493) (1,308)
(1,132) (1,119) (1,91)
(1,93) (1,103) (1,75)
(1,48) (1,58) (1,41)
(4,723) (2,247) (2,133)
(4,261) (2,61) (2,41)
(4,134) (4,76) (2,25)
(8,373) (8,177) (4,68)
(8,19) (8,13) (8,8)
- -- (8,2)
(8,74) (8,42) (8,22)

(1,251) (1,251) (1,251)

(1,32) (1,31) (1,32)

(1,15) (1,17) (1,18)

(1,8) (1,7) (1,7)

(4,377) (4,382) (4,295)

(4,16) (4,16) (4,17)

(4,4) (4,4) (4,4)

(8,176) (8,176) (8,132)

(8,4) (8,4) (8,4)

Table II: Vector Dimension and Codebook Size Assignments (k, N) for R = 0.5 bpp and

R = 0.25 bpp, Predictive Coding.

Subband ,,,00

Subband ,,,01

Subband ,,,10

Subband ,,,11

Subband ,,01

Subband ,,10

Subband ,,11

Subband ,01

Subband ,10

Subband ,11

Subband 01

Subband 10

Subband 11

R=0.5

Q=64c_ Q=32_ Q= 16c_

(1,14) (1,10) (1,16)

(1,21) (1,15) (1,23)

(1,26) (1,20) (1,28)

(1,35) (1,28) (1,35)

(4,383) (4,235) (2,84)

(4,423) (2,125) (2,86)

(4,305) (4,185) (2,64)

(8,276) (4,126) (4,62)

(8,239) (8,138) (8,54)

(8,97) (8,51) (8,24)

(8,30) (8,12) (8,11)

R = 0.25

Q=64c_ Q=32o_ Q=16a

(1,2) (1,2) (1,4)
(1,3) (1,4) (1,6)
(1,5) (1,6) (1,9)
(1,8) (1,10) (1,14)
(4,207) (4,198) (4,120)
(4,293) (4,257) (4,140)
(4,93) (4,109) (4,87)
(8,461) (8,209) (8,78)
(8,206) (8,145) (8,65)
- (8,3) (8,12)
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that the complexity can be increased in this manner while the subband bit rates, ri, rernain

unchanged since
log2 Ni

r i --
ki

Increasing the encoding complexity results in an encoder with a more time-consunfing code-

book lookup but does not affect decoder performance. As the bit rate increases, we see fi'om

Figure 5 that the gain in SNR achieved by increasing the encoding complexity becomes more

significant. For a fixed R and Q, comparison of Figures 5 and 6 shows that the predictive

scheme achieves a gain on the order of 1-4 dB over nonpredictive coding. The improvement

in coding gain is more pronounced at lower bit rates and higher complexities, since the resid-

ual coding scheme is better able to exploit higher limits on encoding complexity at low bit

rates than the nonpredictive scheme.

IV. APPLICATION TO MULTISPECTRAL DATA.

This section discusses the application of WVQ to the compression of multispectral im-

agery. Since each spectral band is a separate monochromatic image, the approach is to code

each of the bands by two-dimensional WVQ using symmetric boundary conditions. The

bit-allocation is performed for the various spectral components simultaneously and hence

the coding of each spectral component is not viewed as a separate two-dimensional problem.

The multispectral problem requires a modification to the WVQ design algorithm dis-

cussed in Section II since the rate and complexity are expressed in terms of multidimensional

pixels. For the case of L spectral components the system design procedure entails minimizing

over the ki and ri subject to

D = --£ . . i(ki)e -'r'(k')_' (5)
I

1 _-, ri < 1_ (6)
L "7" rn_

± E !2_'_'_ < Q (7)
Limi

>__o (8)

ki C Ki (9)

where I(i denotes a prespecified set from which /q must be selected. The optimization

is performed over all of the two-dimensional subbands generated from all of the spectral

components.

Mu]tispectral image WVQ was considered for the application of compressing Landsat

Thematic Mapper (TM) data. Such data consist of seven 8-bit spectral bands (three visible,

three infrared, and one thermal) at a ground sample distance of 28.5 meters. Four data sets

were used in training the coder: Albuquerque, NM (2984 x 3356); Cairo, Egypt (2945 x 3320);
Los Alamos, NM (2984 x 3254); and Mexico City, Mexico (5965 x 6967). The performance

of the coder was evaluated in terms of results obtained by compressing a (2976 x 3552) scene

from the Moscow, Russia, area containing both urban and agricultural areas. The resulting
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Table III: RMSE Quantizer Performanceasa Function of CompressionRatio and Complex-
ity.

Q=8c_ Q=16ol Q=32o/ Q=64_

16:1 3.04 2.35 1.92 1.70

32:1 3.06 2.63 2.43 2.26

64:1 3.85 3.51 3.32 3.24

128:1 4.76 4.71 4.58 4.56

root mean-square error (RMSE) for sixteen combinations of bit rate and encoding complexity

are tabulated in Table III. The compression ratios reported are relative to 56 bits/pixel in

the original data and assume that the bit rates satisfy

1 _ ri R , with L 7 (10)L . mi

The additional gain available from entropy and run-length coding is not included.

It is interesting to compare these results to those obtained by another wavelet-based

compression technique. In [14] Landsat TM images were compressed via a subband de-

composition of each spectral component by a 7-tap nonperfect reconstruction filter bank;

each subband was coded with uniform scalar quantization followed by Huffman and zero-

run-length coding. The experiment was repeated with an image-dependent Karhunen-Loeve

transform (KLT) in the interband direction, whid_ provided noticeable coding gain at the

expense of computational complexity. The WVQ RMSE results depicted in Table III appear

to lie between these two previous approaches, although any comparisons must be qualified by

the fact that the numerical results in these two papers were obtained from different imagery

(Kuwaiti oil fields in the case of [14]). For instance, Table III shows that 32:1 compression

(1.75 bpp) with a complexity of Q = 64ee yields an average RMSE per band of 2.26, or a

little over 2 bits of error. The closest comparable value for non-KLT coding in [14] is a MSE

of 40.02 at 2.51 bpp; dividing the MSE by 7 and taking a square root gives an average RMSE

per band of 2.39, whi& is a slightly greater error at a higher bit rate than our result. With

interband KLT coding, [14] reports a MSE of 25.11, or an average RMSE of 1.89, at 1.55

bpp; this is a lower distortion at a lower bit rate than our result. We are currently currently

working on incorporating interband KLT coding with the WVQ compression method.

The motivation for our investigation of TM data compression is the need to store and

process large amounts of data for postprocessing applications. Using the software package

SPECTRUM [1,5], developed by Los Alamos National Laboratory and the University of New

Mexico, we are able to use a desktop workstation running Unix and X-windows to analyze

and categorize multispectral data that has been clustered into 256 clusters using a variant of

the k-means algorithm. SPECTRUM can manipulate the color map for the computer display

using any transformation of the clustered data, and can display cluster position as a two-

dimensional scatter plot. Using these features, users are able to categorize data by selecting

areas with a known type of land cover, causing all associated pixels in the image to be given

the same pseudocolor representation. Of great interest to us is the robustness of SPECTRUM
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data clusteringwhen appliedto data that hasfirst beencompressedby the WVQ algorithm.
While visual quality of pseudocolorvisualizations remains good after compressionby as
much as32:1, it remainsto be determined how muchquantization distortion SPECTRUM
can tolerate for taskslike Level 1 Land UseCategorization. We areattempting to establish
quantitative distortion criteria basedon the analysisof classificationerror presentedin [15],
which is basedon computing levelsof confidencefor classificationsdoneon clustereddata.
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Abstract

Progressive transmission is a method of transmitting and displaying imagery in stages of
successively improving quality. The subsampled lowpass image representations generated by a

wavelet transformation suit this purpose well, but for best results the order of presentation is

critical. Candidate data for transmission are best selected using dynamic prioritization criteria

generated from image contents and viewer guidance. We show that wavelets are not only

suitable but superior when used to encode data for progressive transmission at non-uniform

resolutions. This application does not preclude additional compression using quantization of

highpass coefficients, which to tile contrary results in superior image approximations at low
data rates.

1 Background

Progressive transmission is a method of encoding and transmitting imagery in such a way that

gross features are able to be displayed first and subsequently refined to higher and higher resolu-

tion. Among the many possible encoding techniques are multiresolution pyramids, discrete cosine

transforms, vector quantization, and wavelet transforms. Tzou [6] provides a comprehensive review

of proposed techniques for progressive transmission.

The order in which the image data is selected, transmitted, and presented to the user may be

dynamically prioritized as a function of both image content and immediate user interest. This

typically results in a display which has a non-uniform resolution. Regions containing visually or

operationally significant information may be rendered at a much higher resolution, with refine-

ment deferred for areas of uniform intensity or lesser importance. Dreizen [3] proposed one such

implementation in which the transmitter identified significant regions and communicated this infor-

mation to the receiver in addition to the image data. Blanford [2] observed that for a large variety

of images this overhead was unnecessary because the receiver could make a reasonable guess at the

location of significant regions from image information already transmitted and displayed.

Recent results of compression using wavelet encoding have been shown to provide efficient bit

rate reduction while maintaining quite acceptable image quality. The multiresolution nature of

the wavelet transform, described by Mallat [5], and its computational efficiency make it a good

candidate for fine-grained progressive transmission as well. Antonini et al. [1], for example, present
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a coarse-grained example of progressive transmission using wavelets by the simple expedient of

displaying each lowpass approximation as it is generated during the course of decoding.

In this paper we show that wavelets are not only suitable but superior when used to encode

data for fine-grained progressive transmission at non-uniform resolutions. We first describe the

approach, then discuss issues and problems in the incorporation of wavelet encoding. We present

results showing a marked improvement in the approximations generated for equivalent amounts

of data transmitted. Finally we show that the compressible nature of wavelets is not lost in this

application; to the contrary, compression by quantization of highpass coefficients results in superior
image approximations at low data rates.

2 Approach

In a prior publication [2] we presented arguments which led to the conclusion that, in the spatial

domain, the low-resolution image approximation which minimizes the mean square error consists of

a collection of disjoint regions each of which is painted with the average value of the pixels subsumed.

For ease of computation and representation, these regions are restricted to representing nodes in

a quadtree constructed by iteratively averaging groups of four pixels. An image approximation,

therefore, corresponds to an arbitrary cut through the quadtree, with the minimal approximation

being the global average represented by the single node at the apex. The progressive transmission

of Antonini et al. [1], for example, can be characterized as displaying a set of horizontal cuts

corresponding to uniform levels of resolution.

But the cuts need be neither horizontal nor planar. In actuality, the process of transmission may

be envisioned as a walk through this quadtree. At each step in the traversal, an unvisited node

is selected and expanded by transmitting the information required to generate its children. At

the receiving end, the current approximation is transformed into its successor by using the new

information to generate and paint the values of the child regions. Thus each approximation differs

from its predecessor in that a single region has been replaced by four subregions. The traversal

terminates when all regions are leaf nodes one pixel in size.

The question then arises which of the many possible traversals is optimal. For a non-interactive

transmission the goal might be to minimize the mean square error, in which case a greedy algorithm

can be applied at each step to select for refinement the region with maximum error. In an interactive

situation, if the viewer has indicated a particular point of interest in the image then the traversal

might select the non-leaf region nearest that point. If a particular feature is of interest, then the

region could be selected which responds most strongly to a feature detection algorithm. Or the
selection might be based on a combination of several criteria.

In this discussion we will model a non-interactive session with the goal of minimizing the error

represented in the approximation. The region with the greatest error is that whose product of pixel

variance and area is maximized. The receiver knows the area but not the pixel variance of the regions

in its approximation. The transmitter knows both and could send a region identifier along with

the information needed to refine the region, but this overhead is generally unacceptable in the low-

bandwidth situations where progressive transmission is most useful. It turns out, however, that for a

wide variety of images a good predictor of the pixel variance within a region is the variance between

the region and those which neighbor it in the current approximation. The receiver and transmitter

can independently perform this computation to select the region and only the corresponding image
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information need be transmitted.

3 Image encoding

In the previous work, we introduced the additional constraints that the encoding method used to

build the quadtree be lossless and introduce no storage overhead. These constraints led to the

selection of the comp/diff encoding scheme first proposed by Knowlton [4]. In this paper we will

relax first the overhead constraint and then the lossless constraint and show by comparison how

the resulting approximations fare.

Knowlton's comp/diff encoding applied to two pixel values produces a composite value which ap-

proximates the average and a differentiator value which approximates the difference. Each of these

values requires precisely the same number of bits as the original pixels, and so requires no storage

overhead. The same encoding function applied to the composite and differentiator returns the orig-

inal pixels, so the procedure is lossless. All is not rosy, however, as the encoded composite value

may differ significantly from the true average. The error is exacerbated if quantization is attempted

in an effort at compression.

The Knowlton encoding is a non-linear function but resembles a wavelet transform with two taps:

low frequency information is captured in the composite while high-frequency information resides in

the differentiator. The current experiment replaces that encoding with a wavelet of eight taps. The

highpass coefficients generated by the wavelet transform require roughly the same number of bits

for representation as the original input, but the lowpass coefficients typically require one additional

bit. Thus the encoding is not without storage overhead, which empirical evidence shows can be

as high as twenty percent. Most of the additional bits are used to represent the top levels of the

quadtree which are transmitted first, so the number of coefficients transmitted will be fewer than

with the same amount of data using the Knowlton encoding. Our hope is that the quality of the

coefficients will more than compensate for the lesser number.

Constructing the encoded quadtree presents no undue difficulties. We choose to treat the image in

a toroidal manner, wrapping left to right and top to bottom, so that it will not be necessary to add

extra rows and Columns of padding at the lower resolutions. We use a separable wavelet function

having one-dimensional 8-element low-pass and high-pass kernels.

Because of the larger basis we can no longer construct the entire quadtree, but must stop at the

second (4x4) level below the apex. These sixteen lowpass values are transmitted and displayed as
the initial approximation. For each region we compute a refinement priority which is the product of

the region area and its external variance. The area is just the number of pixels the region represents.

The external variance of region R is the mean square difference between the region value PR and

the values of regions found in parts of the displayed approximation immediately adjacent to the

region. Let us compute an estimate v_ of the variance using those neighbors, where wg is the

length of the side shared with neighbor N and pN is its displayed value.

= 1 w (pR- p )2 (1)
4WR NEnelghbors(R)

After assigning priorities to all initial regions, we enter the refinement phase.
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4 Image refinement

Tile refinement proceeds in three steps, iterated repeatedly until transmission is complete.

1. Select the maximum priority region for refinement.

2. Transmit the encoded data needed to produce the four subregions.

3. Compute priorities for the new subregions and their immediate neighbors.

The selection of the maximum priority region is simple at the beginning of the transmission, but

with a brute-force approach would quickly grow intransigent as the number of regions multiplies to

a significant fraction of the image size. We deal with this problem by creating and maintaining a

priority heap which holds all unvisited regions. The effort to insert and update priorities in a heap

with N entries is of order O(log N), which renders the problem manageable. The next region to be

selected is always at the top of the heap.

With the Knowlton encoding, the region value together with three additional differentiators was

all that was ncedcd to compute the values of its four children. The broader basis of the wavelet

encoding necessitates that, if region R is to be refined, then not only must its value be present but

also the lowpass values of neighbors in a 5x5 area surrounding it. If a neighbor is found whose

value has not yet been computed, its parent is selected for refinement regardless of priority and

its 5x5 neighborhood examined for data availability. Because the initial regions all satisfy this

neighborhood criterion, the procedure must eventually succeed in selecting a region.

The second step is to identify and transmit the additional information needed to produce the four

children. Just as with the Knowlton encoding, we require three highpass coefficients for each lowpass

one. The difference is that wc now require 25 times as many, and that some may have already been

transmitted for use with other regions. The bookkeeping required to determine which coefficients

remain to be transmitted is painstaking but not unduly taxing. Once all required coefficients have

been provided, the effort to decode the coefficients and produce the subregion values is trivial.
These four values then replace the original region value in the displayed approximation.

Finally prioritics must be computed for the newly created regions. Also, since these new region

values contribute to the priority computations of their immediate neighbors, their priorities must

be invalidated and recomputed ,as well. The replaced region is removed from the priority heap and

all new priorities inserted or updated. This process adjusts the heap so that the new maximum

priority moves to the top, in preparation for the next iteration.

5 Results of wavelet encoding

Figure 1 shows an aerial view of a portion of Moffet Field, California. The original image contains

8-bit data, 512 pixels on an edge. There are many small features as well as sharp edges between

foreground and background, which make it a rather difficult image to compress effectively. Fig-

ure 2 gives a graphic comparison of the approximation error as the transmission progresses. The

horizontal axis measures the number of bits transmitted as a percentage of the original image size.

Knowlton encoding is shown in dark gray. Wavelet encoding is shown in black. The graph clearly
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shows that wavelet encoding provides approximations with half the error over most of the trans-

mission, a significant improvement. The light gray curve is the result of transmitting the wavelet

coefficients at a uniform resolution: a breadth-first traversal of the quadtree. The knees in the

curve correspond to resolution changes. The variable resolution approach is clearly superior.

It is difficult to appreciate the actual impact of progressive transmission in a static presentation

such as this. Figures 3 and 4 show snapshots of the display as it would appear when 2% and

5% of the data has been transmitted, using the wavelet encoding. Figures 5 and 6 show the

corresponding displays using the Knowlton encoding. The Knowlton encoding provides higher

contrasts and sharper edges where they are found, but the wavelet encoding provides a more

balanced development.

Figures 7 and 8 show results of transmission error for an aerial view of the Los Angeles airport.

The image itself is hazy with few contrasts so it should exhibit lower overall levels of error, as the

graph bears out. The black curve for variable resolution wavelet encoding again shows half the

error of the dark gray Knowlton encoding. The light gray curve for breadth-first transmission is

close to that for variable resolution, as one would expect when few features stand out.

Figures 9 and 10 show results for yet another aerial view of an airport, this one a Spot satellite

image of Beirut, Lebanon. Though the overall intensity and feature distribution are different, this

image exhibits approximation error similar to the Los Angeles image.

6 Results of coefficient quantization

One reason wavelets provide a good basis for image compression is that the result degrades gracefully

under quantization, even at extreme levels. In order to verify that this characteristic had not been

lost when used with progressive transmission, a simple quantization scheme was applied to the

wavelet coefficients and the impact on the approximation error observed. Briefly, this scheme

divides all highpass coefficients in a given level of the quadtree by the same value. This value is

greatest at the lowest level, the leaf nodes, and is reduced by a factor of two at each level above.

Figure 11 shows the results when applied to the Moffet Field image. The thick black curve on the

right represents the uncompressed wavelet transmission, just as in Figure 2, though shown at an

expanded scale. The second curve from the right represents a quantization factor of 4 at the base

level of the quadtree, of 2 at the level above the base, and the remainder of the coefficients left

unquantized. The base-level quantization factor is doubled for each successive curve, so that the

leftmost curve begins with a quantization factor of 64 at the base level of the quadtree, reduced

successively to a divisor of 2 at level four, with only the original lowpass coefficients remaining
unscathed.

While the higher levels of quantization introduce significant error in the later stages of the transmis-

sion, the initial portions critical for early identification of features show only improvement. More

significantly, the smooth degradation indicates that efforts toward designing more sophisticated

quantization schemes would not go unrewarded.
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7 Conclusions

In this paper we have shown that wavelets are not only suitable but superior when used to en-

code data for fine-grained progressive transmission at non-uniform resolutions. The results show a

marked improvement in the approximations generated for equivalent amounts of data transmitted

when wavelet encoding is used in place of Knowlton encoding. Finally we have shown that the

compressible nature of wavelets is not lost in this application; to the contrary, compression by

quantization of highpass coefficicnts results in superior image approximations at low data rates.
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Moffet Field data:

Figure 1: Moffet Field original image

Figure 2: Comparison of encoding error
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Moffet Field snapshots:

Figure 3: Wavelet encoding, 2% of data Figure 4: Wavelet encoding, 5% of data

Figure 5: Knowlton encoding, 2% of data Figure 6: Knowlton encoding, 5% of data
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Los Angeles data:

: :: :.

Figure 7: Los Angeles Airport original image
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Beirut Airport data:

Figure 9: Beirut Airport original image
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Figure 10: Comparison of encoding error
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Quantization data:

Figure 11: Comparison of quantization error

35





9 3 - 2 4 5

FAST IMAGE DECOMPRESSION FOR TELEBROWSING OF IMAGES

Shaou-Gang Miaou and Julius T. Tou
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Abstract. Progressive image transmission (PIT) is often used to reduce the transmission time

of an image telebrowsing system. A side effect of the PIT is the increase of computational

complexity at the viewer's site. This effect is more serious in transform domain techniques
than in other techniques. Recent attempts to reduce the side effect are futile as they create

another side effect, namely, the discontinuous and unpleasant image build-up. Based on a

practical assumption that image blocks to be inverse transformed are generally sparse, this

paper presents a method to minimize both side effects simultaneously.

1. Introduction

One important evaluation criterion for a telebrowsing system is the response time which is
the time elapsed from the moment a retrieval request is issued until the desired information

is actually displayed on the monitor [1]. The response time can roughly be divided into three

major parts. The first part is the searching time for the system to locate the desired
information. The second part is the transmission time to send the information through a

channel. The third part is the display time for the information to be displayed on the

monitor. The early studies of the telebrowsing systems were concentrated on the efficient

retrieval of pure text information [2,3]. In this case, the searching time is the only major
concern. However, for modern telebrowsing systems where multimedia information,

including text, audio, image, and video, is considered, the transmission time and the display
time become a significant part of the response time because of huge amount of data

involved in still images and video (a sequence of images).

To reduce the transmission time of an image telebrowsing system, a well known scheme

called progressive image transmission (PIT) is often used. PIT allows an approximate
reconstruction of an image whose fidelity is built up gradually until the viewer decides either

to abort the transmission sequence or to allow further reconstruction. This scheme increases

the effective compression ratio because usually only a small part of the compressed data

needs to be sent for browsing purpose.

With PIT techniques, the transmission time can be greatly reduced. However, it also creates

a side effect, that is, it increases the processing time at the viewer's site because an inverse

PIT process is required. Since the major task of the inverse PIT process is the image

decompression given part of the compressed data, the research is aimed at the development
of fast image decompression schemes for the inverse PIT process.

The rest of the paper is organized as follows. First, the PIT schemes and their computational

complexities are briefly addressed. Then, the drawbacks of recent attempts to reduce the
computational complexities are discussed. Next, the demonstration of a new approach is

given. Finally, a performance comparison between the new approach and the recent ones
is made.
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2. PIT Schemes and Their Computational Complexities

There are many PIT schemes. According to Tzou's classification, they are divided into three
major categories, namely, spatial domain, transform domain, and pyramid-structured, based
on where the progression takes place [4]. Each category can be further divided into several
classes of techniques. The classification is shown in Figure i. Note that not all of the PIT
schemes will produce a considerable amount of computational overhead in the inverse PIT
process. For instance, the spatial domain schemes only require a very low computational
effort in the inverse PIT process. In pyramid-structured PIT schemes, only successively
filtered pyramid techniques require high computational complexity in the inverse PIT
process. Even for the successively filtered pyramid techniques, however, the complexity to

process the first few levels of a pyramid from the top remains low. From a practical point
of view, the processing of the first few levels of the pyramid may suffice the purpose of
image browsing. On the other hand, transform domain techniques usually take considerable
amount of computation in the inverse PIT process, since the inverse transforms have to be
carried out with about the same computational effort for every stage of image
reconstruction.

Spatial Domain Techniques
Bit-plane method
Tree-searched vector quantization
Progressively quantized DPCM

Transform Domain Techniques
Scanning pattern techniques
Transform domain multistage quantization
Bit-slicing method

Pyramid-structured progressive transmission
Tree-structured pyramid

Binary tree
Quadtree

Successively filtered pyramid

Figure 1. Tzou's classification of PIT schemes

In transform domain PIT schemes, the transform coefficients are first quantized and then

divided into segments. Only one segment of quantized coefficients is sent for one stage of
image reconstruction. The only differences among all transform domain techniques are the
ways to determine the segments and the order in which they are sent. One common feature
among them is that the transform coefficients are only "partially" encoded where in a non-
PIT or sequential scheme they are said to be "fully" encoded.

For a transform domain non-PIT scheme, one M x N inverse transform for an M x N image
block is needed. However, for a transform domain PIT scheme, r times of M x N inverse
transform are needed for the image block, where r is the number of stages of image
reconstruction. The lower bound for r is 1 but its upper bound depends on the image, the
viewer, and the PIT scheme. Therefore, the computation load for inverse transform is r
times heavier in PIT schemes than in non-PIT schemes.

One transform domain scheme using discrete cosine transform (DCT) receives great
attention, since the DCT has the energy packing capabilities and also approaches the
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statistically optimal transform (i.e. Karhunen-Loeve transform) in decorrelating a signal
governed by a Markov process[5]. In addition, it is part of the recently approved JPEG
standard [6,7]. The JPEG standard hasbrought a tremendous impact on the image-coded
related industry. However, as far as implementation of the standard is concerned, the
standard provides only a guideline. How to implement the standardefficiently for certain
application still relies on the ingenuity of designers.For example, JPEG has chosen to
specifyneither a unique forward DCT (FDCT) algorithm or a unique inverse DCT (IDCT)
in its recommendation.This is becauseresearchin fast DCT algorithms is ongoing and no

single algorithm is optimal for all implementations [7]. For the application of inverse PIT,
we will show that traditional fast two dimensional (2-D) IDCT algorithms can be accelerated
to reduce the processing time at the viewer's site.

3. Previous Approaches and Their Drawbacks

To relieve the computation burden of IDCTs in inverse PIT, the following approaches have
been used.

Approach 1: Use traditional fast algorithms for IDCT. The computational complexity is
reduced from O(N 4) by the definition of IDCT to O(NZlog2 N) by traditional fast algorithms,
where N x N is the block size. There are many fast algorithms available for IDCT. For an
8 x 8 IDCT, one of the best algorithms reported so far takes 96 multiplications and 466
additions [8].

Approach 2: Use a fast progressive reconstruction method. It is a combination of a special
scheme and the use of approach 1. This approach was first proposed by Takikawa to
perform fast progressive reconstruction for discrete Fourier transformed and Walsh-
Hadamard transformed images [9]. Later, Miran and Rao followed the similar derivation
by Takikawa and developed a fast progressive reconstruction for DCT images [10]. The
basic idea of approach 2 is to decompose the N x N transformed block into logzN + 1

sparse matrices, each of which can be inverse transformed by 1 x 1, 2 x 2, 4 x 4,..., and N x
N fast inverse transform algorithms.

Approach 2 has some advantages over approach 1. First, the computational complexity is
lower. For example, consider a 4-stage image reconstruction and an 8 x 8 image block.
Approach 1 takes four 8 x 8 IDCTs while approach 2 requires only one 1 x 1 IDCT, one 2
x 2 IDCT, one 4 x 4 IDCT, and one 8 x 8 IDCT. The computational saving is obvious.
Secondly, the delay time is reduced. The delay time is the time to wait for all the elements
in a transformed block before an inverse fast transform can be performed.

However, approach 2 has a serious problem, that is, it has a poor and discontinuous image
build up. The reason is that the order in which the sparse matrices are formed and sent is
not in the order of visual significance. In general, a DCT coefficient with higher variance

(or energy) tends to be more visually significant than that with lower variance. It is well
known that the DCT coefficient variances are highly correlated along the zig-zag scan [11].
Approach 2 has a fixed transmission pattern that does not even close to the zig-zag scan.
This problem has been confirmed experimentally by Miran and Rao [10]. They ascribed the
drawback to not having low frequency terms immediately adjacent to DC components in the
intermediate stages of reconstruction. Another drawback of approach 2 is that it still
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requires all elementsof the sparse matrices to start computing the inverse transform. Thus,
the delay time is reduced but not eliminated.

One more drawback for both approaches 1 and 2 is the computational redundancy of
traditional fast algorithms in inverse PIT. If IDCT is used in image decompression, its input
block contains only a few nonzero coefficients. In addition, if a PIT scheme is used, the
input matrix to IDCT contains even fewer nonzero elements. To visualize the redundancy,
consider the signal flowgraph of a fast IDCT algorithm. Since a zero presented at an input
node contributes nothing to the output, the paths between a zero input node and output
nodes are trivial or redundant.

To get a picture on how many spatial frequencies retained on the average after the
quantization, many 512 x 512 8-bit greyscale images and RGB components of color images
were tested. In the test, JPEG's coding scheme, including a recommended quantization
table, was used. Part of the" test result is presented in column 3 of Table 1. It is shown, even
for a very busy image such as baboon image, no more than a quarter of quantized
coefficients are nonzero. Even with so many spatial frequencies set to zero, the
decompressed images and their originals are perceptually indistinguishable. Next, consider
the case when a small visible image degradation is allowed. To produce a small image
degradation, the same test was repeated except that the round-off operation in JPEG's
scheme was replaced by truncation. The new numbers are shown in column 4. The
decompressed images have only minor degradation, for it does not diminish our capability
to recognize meaningful objects in the images. In fact, the image quality is good enough to
be the last stage of PIT. The test shows that the number of nonzero quantized DCT
coefficients decreases sharply at the minor expense of image quality. In the inverse PIT
process, the average number of nonzero elements in an 8 x 8 matrix does not need to be

higher than that in column 4.

Table 1. Average # of Nonzero Quantized DCT Coefficients in an 8 x 8 Block

Images

Lena

Image Activity

Low

Round-off Truncation

6.13 4.01

Boat Medium 9.20 6.00

Baboon High 15.50 9.80

How much of the matrix must be zero for it to be considered sparse depends on the
applications. Generally, a matrix is called sparse if there is an advantage in exploiting its
zeros [12]. It is well known that exploiting the sparsity can lead to enormous computational
savings in many applications such as solving simultaneous equations with Gaussian
elimination method. Inspired by this fact, it is curious to see if the sparsity of the input
matrix can also be exploited to compute IDCT efficiently in the environment of inverse PIT.
Since the characteristic of an input image block to IDCT is generally not considered in
traditional algorithms, a nonconventional approach must be adopted to exploit the sparsity
of the input matrix. The proposed approach will be presented in the following manner. First,
we describe the goal to be accomplished by the approach. Then, the rationale of the
approach is discussed. Next, based on the rationale, two methods are presented -- one is too
slow to be useful, the other is its fast version. The fast version is shown to be good enough

for the practical use.

4O



4. The Proposed Approach

In the inverse PIT process, computation burden of IDCT and computation redundancy
associated with traditional algorithms are two major problems. The inherent drawbacks in

Takikawa's or Miran and Rao's approach present another problem in the inverse PIT

process. In view of all these problems, our approach should meet the following goals. First,
it must be fast and efficient. Second, it must allow a scanning pattern that can conform to

the visual significance. Finally, it must have practically no delay time.

For the ease of discussion, several terms are defined first. A target matrix is an image block

consisting of the quantized DCT coefficients that are partially encoded for PIT. Performing

an IDCT on a target matrix results in a matrix called goal matrix. The result of processing

one nonzero element in the target matrix is called the partial contribution to the goal

matrix. Throughout this paper, the partial contribution is treated as a matrix or all its

elements depending on the context.

Based on the definition of 2-D IDCT, only nonzero elements in the target matrix can

contribute to the goal matrix. In fact, the value of each nonzero element can affect the

values of all elements in the goal matrix. The idea of our approach is to completely ignore
the zero elements in the target matrix and process each nonzero element separately and

efficiently. The goal matrix is then updated periodically by adding the partial contribution.

Therefore, the computation of IDCT is divided into two tasks, i.e., the computation of

partial contribution and the update of the goal matrix. The idea adapts particularly well to

the scheme where DCT coefficients are run-length coded (such as JPEG's).

The definition of 2-D IDCT is

M-I N-I

2 Y_" _ c(u)c(v)F"vc°s((2x+l)Un)c°s((2y+-l)wl_2M ) _ 2N )
Mv/-M--Nu=0 v=O

where x=0, ..., M-I, y=0, ..., N-l, and

ff k=0,
= 1 otherwise.

(1)

The coefficient in front of the double summation of equation 1 is only a scale factor which

requires essentially no computation (except a register shift operation) in practical

applications where M=N and M=4, 8, or 16 are often used. Thus, it is usually neglected

when comparing the computational complexity among the fast algorithms of IDCT. By

taking the scale factor out, equation 1 becomes

F,E  (u)c(v)r.sos.cos
u=O v=O

where

If [f_y].v is defined as the partial contribution to the goal matrix [f_] due to Fur alone, then
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2t,,i )
(3)

The partial contribution can be obtained by the use of definition in equation 3 directly.
Assume the values of cosine functions for different combinations of x and u are

precalculated and stored as a table. The table can also be used as the values of cosine

functions for different combinations of y and v with x and u replaced by y and v,

respectively. Let Q be the number of multiplications required to find the partial contribution

due to Fu,,. Then, Q=2MN if both u and v are not zero, Q=3MN if u=0 or v=0 but not

both, and Q = 0 if u and v are both zero. For an M x N target matrix with n (> 1) nonzero

Fuv, where n < < MN, the number of multiplications to get the goal matrix is from 2(n-
1)MN to 3nMN. With this naive approach, no addition but 128 to 384 multiplications are

required if M =N=8 and n=2. This is not good enough, since an 8 x 8 fast IDCT can take

as low as 96 multiplications [8]. Therefore, a better way to compute the partial contribution
is needed.

Equations 2 and 3 are equivalent if only one term in the double summation of equation 2

is nonzero• So the traditional fast algorithms for equation 2 can be applied to equation 3

as well. However, the direct use of them to compute the partial contribution is not desirable

since they contain high computational redundancy. We found that with a systematic

reduction rule for the signal flowgraphs of traditional fast algorithms, a much faster way to
compute the partial contribution than the naive approach is possible. The rule is based on

the two attributes associated with the partial contribution, which we call the mirror effect
and the reducible property.

From equation 3, it can be readily shown that

[fx'y]u_ = (" 1)u[fM-l-×' y].v
[fxy']uv = (" 1)v[fx N-l-y']uv

[fx'y']._ = ('l)_+_[fM'-Vx',N-Vy']u_

(4)

where x' and y' are particular values of x and y, respectively. Equation 4 indicates that the

partial contribution exhibits high degree of symmetry or mirror effect. Note that only

possible sign changes are involved in equation 4 and practically no addition or multiplication

is required. The significance of this result is that only a quarter of the partial contribution
needs to be determined through additions and multiplications. The rest of them can be

determined by simple copy operations and possible sign changes.

The reducible property can be stated as follows. The M x N partial contribution due to F,,,,

is equivalent to that of (M/m) x (N/n) partial contribution due to F_/,.,,_/n, where cd(M,u)
= m, cd(N,v) = n, and cd(a,b) is a common divisor between non-negative integers a and b.
This statement can be proved easily by noting that

M,N[fx_]u,v = M/m,N/n[fxy]u/m,v/n (5)

where M N[fx ]uv iS the [fx ],v defined in equation 3. If cd(M,u)= 1 only, it is said to be an
• ., '3' , . "Y. . .
irreducible pamal contnbutmn m row. Similarly, if cd(N,v)=l only, it is said to be
irreducible in column. If for some m>l or n>l, the partial contribution is said to be

reducible. Note that the reducible property is separable, i.e, the reduction in row size and

column size can be processed separately. The largest reachable reduction for F,_ happens
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when gcd(M,u)=m and gcd(N,v)=n, where m>l and n>l, and gcd(a,b) is the greatest
commondivisor betweennon-negativeintegersaand b. For example, if M =N = 8 ,u=6 ,and
v =4, the 8 x 8 partial contribution due to F64is equivalent to 4 x 2 partial contribution due
to F31,sincecd(8,6) canbe 2 and cd(8,4) canbe 4. It is also a maximum reducible casefor
F64sincegcd(8,6)=2 and god(8,4)=4. Note that gcd(a,0) = a. Therefore, if u and v are both
zero, M x N partial contribution due to Furis simply a 1x 1 partial contribution due to F00,
which is alwaysF00/2no matter what the valuesof M and N are.

Combining the mirror effect and the reducible property can lead to a great saving in
computation of partial contribution. Considerthe following example:We want to compute
the 8 x 8 partial contribution due to F44.Sincegcd(8,4)=4, it can be reduced to the 2 x 2
partial contribution due to Fn. By using the mirror effect, only 1 x 1 of the 2 x 2 partial
contribution needs to be determined explicitly, which is f00=F44/2. It can then be expanded

to 2 x 2 partial contribution by the use of mirror effect:

where f01=-f00, f_0=-f00, and ftl=f0o. Similarly, by using the mirror effect for F_l, we expand

the partial contribution to 4 x 4 :

fo0 fOl f02 f03

flO fll f12 f13

f _of. l f22
fz:

where fo,=-f01, fo3=-foo, fP=-fll, f13='flo, f_o='flo, f*l=-fll , f30='foo , f31='f01 , f22=fll' f_3:fao'

f32=f01, f33=f00 . Since cd(8,'4) can be 2, the 8 x 8 partial contribution due to F44 is equivalent

to the 4 x 4 partial contribution due to F22. By using the mirror effect for F22, we can expand

the partial contribution of 4 x 4 to the desired result of 8 x 8. Note that no multiplication

is required to determine the 64 elements of partial contribution due to F44.

The basic principle to reduce the signal flowgraph of a traditional algorithm is by retaining

only the nontrivial paths. This concept is demonstrated by an example. Consider the row-
column or indirect approach of a fast 2-D IDCT for a 4 x 4 target matrix. Chen's algorithm

is chosen here because it is simple and well recognized [13]. Normally, 8 4-point 1-D IDCTs

are needed to accomplish the task (with very complicated data reordering, 4 4-point IDCTs

are enough [8]). However, in our case at most 3 4-point IDCTs are necessary (1 along the

rows (or columns) of the target matrix to get an intermediate matrix and 2 along the

columns (or rows) of the intermediate matrix to get a 2 x 2 submatrix of the partial

contribution). The other three 2 x 2 submatrices can be derived automatically by the use of
mirror effect. Furthermore, each 4-point IDCT can be done efficiently since only one input

data out of 4 is nonzero. Consider the signal flowgraph for a 4-point IDCT shown in Figure

2(a). The outputs of the 4-point IDCT (denoted by f0, f_, f2, and f3) can be treated as linear

combinations of the 4 inputs (denoted by F 0, F_, F2, and F3). Since only one of the inputs
is nonzero, Figures 2(a) and 2(b) are functionally equivalent. The signal flowgraph in Figure

2(b) can be further simplified by retaining only two of the four outputs (f0 and f.0 as shown
in Figure 2(c) because the other two outputs can be derived by the use of marror effect.
Since the reducible property is separable, it can be used here to further reduce some of the

subgraphs in Figure 2(c). Specifically, the subgraphs with input F 0 and F 2 are reducible. The
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final irreducible subgraphs are shown in Figure 2(d). For convenience, the subgraphs shown
in Figure 2(d) are said to be in their primitive forms. In other words, they can not be

reduced or simplified any more. The above procedure can be extended easily to 8-point or
higher order cases.

The primitive subgraph with input F u and the one with input F v can be cascaded as a signal

flowgraph to compute part of the partial contribution due to F,. v. The connection rule is: at

each output of the first subgraph, the second subgraph is cascaded. Which subgraph should

be the first is immaterial as far as the result is concerned. However, the computational
complexity may be different.

The complexity of computing part of the partial contribution due to F,v can be examined

by checking the primitive subgraphs with input F u and F_. The two primitive subgraphs are
cascaded in the way described earlier. If the first subgraph takes P multiplications and the

other requires Q multiplications, then the total number of muhiplications required to obtain

part of the partial contribution would be P+ PQ multiplications. Alternatively, P and Q are

also the number of output nodes for one subgraph and another, respectively. So P and Q

can be obtained by counting the number of output nodes of the irreducible subgraphs. Since
P+PQ = P(I+Q), a fast way to te]I the required number of multiplications is to take the

product of P and Q+ 1. P+PQ multiplications will also be the complexity to compute the
full size partial contribution since no addition operations are involved and the expansion of

partial contribution to its full size adds no complexity. Suppose the two subgraphs are
cascaded in reverse order, the complexity becomes Q+QP. But Q+QP ¢ P+PQ if P ¢ Q.

Thus, the order of the subgraphs is relevant to the complexity. If P<Q, P+PQ is always
smaller than Q+QP. Therefore, the order selection should be such that the first one

requires less complexity than the second one. The numbers of multiplications required for
different combinations of u and v are shown in Table 2 and Table 3 for 4 x 4 and 8 x 8,

respectively. Note that for u=0 or M/2 and v=0 or N/2, no multiplication is required
(except a left shift operation by one bit).

Table 2. The Number of Multiplications

Associated with Fuv (4 x 4)

Table 3. The Number of Multiplications

Associated with Fuv (8 x 8)

u_ 0 1 2 3 0
1

0 0 3 0 3
2

1 3 6 3 6 3

2 0 3 0 3 4

5

3 3 6 3 6 6

7

0 1 2 3 4 5 6 7

0 5 3 5 0 5 3 5

5 20 10 20 5 20 10 20

3 10 6 10 3 10 6 10

5 20 !10 20 5 20 10 20

0 5 3 5 0 5 3 5

5 20 10 20 5 20 10 20

3 10 6 10 3 10 6 10

5 20 10 20 5 20 10 20
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According to Table 3, we can estimate the average number of multiplication required for
a nonzero element in the 8 x 8 case. Assume that the chance of a nonzero element falling

in any u-v pair is equally likely. Then the average will be the 1/64 of the sum of all the
numbers shown in Table 3. The result is 9.5 multiplications per nonzero element. This is

about 7 to 20 times faster than the naive approach mentioned earlier. Similarly, from Table
2, we will get 3 multiplications per nonzero element for the 4 x 4 case.

The update of a goal matrix is straightforward because it involves only additions of the
corresponding elements in each partial contribution. The total number of additions is (n-
1)MN for the update of the goal matrix, where n is the number of nonzero elements in an
M x N target matrix.

5. Performance Comparison of the Approaches

The advantages of the proposed approach are as follows:

(1) It has essentially no delay time and computational redundancy.
(2) It allows any scanning or transmission patterns, including the zig-zag scanning pattern.

Note that the zig-zag scanning pattern is generally good for many images. However, a
better or optimal scanning pattern for a particular image may deviate from the zig-zag
scanning pattern [14]. Furthermore, it can be different from one image to another.
Therefore, it is critical to be adaptive to different scanning patterns.

(3) In inverse PIT, it has lower computational complexity than traditional fast algorithms.

Both advantages 1 and 2 are due to the separate processing of the element in the input
matrix. The performance comparison of approach 1, approach 2, and the proposed approach
are summarized in Table 4.

Table 4. Performance Comparison of the Approaches

Scanning Pattern

Delay Time

Computational Redundancy

# of Multiplication"

Approach 1

Adaptive

High

High

384

Approach 2

Fixed and Poor

LOW

Low Lowest

114

Proposed

Adaptive

Lowest

95

# of Additions" 1864 740 576

"The fast algorithm in [8] is used for approaches 1 and 2. The number of nonzero elements
in an 8 x 8 target matrix is assumed to be 10 on the average. In addition, 4 stages of image
reconstruction are assumed.

6. Conclusion

This paper presents a new and promising solution to the problem of heavy computation of
IDCTs in inverse PIT process. When approach 2 was shown to have poor and discontinuous
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image build up in 1990 [10], the research in fast progressive reconstruction for transform

domain PIT schemes seems to be hopeless. With the proposed approach, both the fast

progressive reconstruction and the pleasant image build up can be achieved simultaneously.

This is an encouraging result for the research of transform domain fast progressive
reconstruction.
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Abstract. Although a variety of techniques are available today for gray-scale image compression,
a complete evaluation of these techniques cannot be made as there is no single reliable objective
criterion for measuring the error in compressed images. The traditional subjective criteria are
burdensome, and usually inaccurate or inconsistent. On the other hand, being the most common
objective criterion, the mean square error (MSE) does not have a good correlation with the
viewers' response. It is now understood that in order to have a reliable quality measure, a
representative model of the complex human visual system is required. In this paper, we survey
and give a classification of the criteria for the evaluation of monochrome image quality.

1. Introduction

There is an ever increasing demand for transmission and storage of vast amounts of information in
data processing environments today. To reduce the large costs involved, data compression is a
widely accepted tool which aims at minimizing the amount of data to be stored or transmitted. A
variety of data compression techniques have been developed in the past few decades for different

types of industrial, commercial, and educational applications. These techniques can be classified
into two major categories: Lossless (exact) and lossy (inexact) [ 1, 2, 3]. Lossless compression is
concerned with reconstructing an exact replica of the original input data stream. It is essentially
used in text compression where no loss can be tolerated. Disastrous results may be encountered
for even a single bit of loss in, for example, program files or database records. The techniques in
this category typically reduce text size 40 to 80%, while those developed for specific applications
may achieve compression over 90%. Lossy data compression causes some amount of loss which
is considered to be a concession for a drastic increase in compression. Lossy compression

techniques are effective and appropriate primarily for digitized voice and images for two reasons:
Firstly, huge volumes of voice and images are normally generated in a typical application and,
secondly, digital representation of analog signals is only an approximation, introducing a certain
loss to begin with.

Numerous image compression techniques [2-6] exist today with the common goal of reducing the
number of bits needed to store or to transmit images. The efficiency of a compression algorithm is
generally measured using three criteria:

1) compression amount,
2) implementation complexity, and
3) resulting distortion.

The amount of compression can readily be obtained using several definitions, among which there

are compression ratio, figure of merit, and compression percentage. Algorithmic complexity, on
the other hand, can be measured by considering the data structures as well as the type and number
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of operationsrequired.Thedifficulty in evaluatingalossycompressionalgorithmcomesfrom the
fact that thereis no reliableandconsistentmeasurefor determiningthe magnitudeof distortion
resultingfrom theloss. In otherwords,we lackausefulandpracticalmeasurefor imagequality
assessment!Sucha measureis not only neededfor comparingimagesproducedby different
techniques,butit is alsoinstrumentalin designingimageprocessing/compressionalgorithms.

In thispaper,wesurveythecriteriaavailablefor theevaluationof monochromeimagequality. In
spiteof thefact thatsomeof the measuresfoundin the literaturehavespecifically beenusedfor
ratingtheperformanceof imageprocessingsystems,theyareapplicablein evaluatingcompression
algorithmsequallywell.

2. Image Quality Measures

It is possible to classify image quality criteria as given in Figure 1.

Absolute

Subjective criteria

Image quality criteria

I

Quantitative criteria

(univariate & bivariate)

I

Comparative Unweighted Weighted

Lp-norm Power spectrum Other Lp-norm Power spectrum Other

Figure 1. Classification of Image Quality Criteria

2.1 Subjective Criteria

As the final user of images are humans, the most reliable and commonly used assessment of image
quality is the subjective rating by human observers. Both expert and nonexpert observers are used
in experiments; nonexperts represent the average viewer while experts are believed to be able to
give better, more 'refined' assessments of image quality since they have been trained and are
famihar with images and their distortions.

In absolute evaluation, the observers view an image and assess its quality by assigning to it a
category in a given rating scale, whereas in comparative evaluation, a set of images are ranked
from best to worst by the observers. The rating scales that appear in the relevant literature [5, 12,
14, 15, 19] are listed in Table 1.

50



Table 1. Ratin_ScalesUsedin SubjectiveEvaluation

A°

5. Excellent
4. Good
3. Fair
2. Poor

1. Unsatisfactory (bad)

B°

7. Best

6. Well above average
5. Slightly above average
4. Average
3. Slightly below average
2. Well below average
1. Worst

C.

1. Not noticeable (perceptible)
2. Just noticeable (perceptible)
3. Definitely noticeable

(perceptible) but only slight

impairment
4. Impairment not objectionable
5. Somewhat objectionable
6. Definitely objectionable
7. Extremely objectionable

D. E. F.

3 Much better 5. Imperceptible 10, 9 Very good
2 Better 4. Perceptible but annoying 8, 7 Good

1 Slightly better 3. Slightly annoying 6, 5, 4 Fair
0 Same 2. Annoying 3, 2 Bad

-1 Slightly worse 1. Very annoying 1, 0 Very bad
-2 Worse
-3 Much worse

The mean rating of a group of observers who join the evaluation is usually computed by

R = st nk nk ,

where Sk = the score corresponding to the kth rating, nk = the number of observers with this

rating, and n = the number of grades in the scale.

Bubble sort [5, 11, 22] is another technique used in image rating. With this technique, the subject
compares two images A and B from a group and determines their order. Assuming that the order
is AB, he/she takes a third image and compares it with B to establish the order ABC or ACB. If
the order is ACB, then another comparison is made to determine the new order. The procedure
continues until all the images have been used, allowing the best pictures to bubble to the top if no
ties are accepted.

It is important to note that the results of subjective rating are affected by a number of factors
including

a) type and range of images,
b) level of expertise of the observers, and
c) experimental conditions.

If standards can be established for these factors, the results obtained in different locations and at

different times may then become comparable.

2.2 Quantitative Criteria

Quantitative measures for image quality can be divided into two classes: Univariate and bivariate
[ 19]. A univariate measure assigns to a single image a numerical value based upon measurements
of the image field, and a bivariate measure is a numerical comparison between two images.
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Fidelity measurementsareusuallymadeusing an arrayof discreteimagesamples,althougha
continuousimagefield canalsobegeneratedby two-dimensionalinterpolationof thesamplearray
if the overheadis justified. Imageerrormeasurescanbe definedin either spatialor frequency
domain.

Denotingthe sampleson the original imagefield asF(j,k), a spatialdomain,univariatequality
ratingmaybeexpressedin generalas

M N

Q= _ __, O{F(j,k)}
j=l k---1

for NxM samples, where O {. } is some operator.

Bivariate measures are more frequently used in image quality measurement. If F(j,k) denotes the

samples on the degraded image field, a number of measures can be established to determine the
closeness of the two image fields. The alternatives are listed below [5, 9, 12, 19, 22-25].

(i) MN i
^ / lip

Lp= (1/MN) _ _ I F(j,k)- F(j,k)l p
j=l k=l

A major class of bivariate error measures is based on the .Lp-norm. The factor p determines the
relative significance of errors of different magnitudes. LI _s the average absolute error and L2 is
the commonly used root mean square error (RMSE). As the value of p is increased, a greater
relative emphasis is given to large errors in the image.

(ii) Low order moment of a power spectrum.

(iii)

M N

K = _ _ F(j,k)F(j,k)
j--lk=l

This measure is obtained by discretizing the continuous cross-correlation function.
normalized by the reference image energy to give unity as the peak correlation:

M N

_ F(j,k)?(j,k)

NK = j=l k=l
M N

_ [F(j,k)]2

j=l k=l

It may be
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(iv)

(v)

(vi)

Correlation quality:

CQ=

M N

_ F(j,k) F(j,k)

j=l k=l

M N

_ F(j,k)

j=l k=l

Structural content:

SC =

M N

E Y-, [F(-j'k)]2

j=l k=l

M N

E E t G,k)l
j=l k=l

Normalized absolute error between the reference and degraded image fields:

NAE =

M N

Z Z IO{F(j,k)}- O{FO,k)}l
j=l k=l

M N

_.,lO{F(j,k)ll
j=l k=l

(vii) Normalized mean square error:

NMSE =

M N

_ [O{F(j,k)}-O(F(j,k)}] 2

j=l k=1

M N

y__,V/__,[O{F(j,k)}]2

j=l k=l

(viii) Peak mean square error:

PMSE =

M N

(1/MN) Z _ [O{F(j,k)}-O{F(j,k)}] 2

j=l k=l

A 2

where A represents the maximum value of O{F(j,k)}.

The definitions used for the operator 0 {. } in (vii) and (viii) are

(a) F(j,k)

(b) [F(j,k)] v (Power law)
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(c)

(d)

kl logb [k2 + k3 F(j,k)] (Logarithmic)

[F(x,y) ® H(x,y)] 8 (x-jAx, y-kAy) (Convolution)

(ix) Laplacian mean square error:

M-I N-I

_ [OlF(j,k)}- OlF(j,k)}l 2

LMSE = j=l k=2
M-1 N-I

2 2 OtFO )J]2
j=l k=2

where O{F(j,k)} = F(j+I, k) + F(j-1, k) + F(j,k+l) + F(j, k-l)- 4F(j,k)

In many applications, the mean square error (however it is defined) is often expressed in terms of a
signal-to-noise ratio def'med in decibels.

(x) Image fidelity:

M N

Z W0,k)-
IF= 1 __=l; k=l

M N

E E [F(j,k)]2

j=l k=l

(xi) Difference[j,k]= F(j,k)-F(j,k)

(xii)

M N

Z Z Difference [j,k]/MN

j=i k=l

(xiii) Max{l Difference[j,k] I}

(xiv) Histogram of the compression error (constructed by plotting the number of x's versus x for
all values of x found in the difference matrix).

(xv) Hosaka plots

(xvi) Sensitivity and predictive value positive curves

(xvii) Rate-distortion curves.

It is reported that image quality assessment can be improved by incorporating into the evaluation
process some model of the HVS. The HVS is incorporated into the quality measure using two
distinct approaches. In the first approach, the Lp norm (or one of its variants) is employed
attaching a weight to the image samples either in the spatial or frequency domain. The second
approach is concerned with weighting the digital image power spectrum.
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In oneof theearlieststudies,thetransformation

O{, ] = HL (x,y) ® ON {-}

is usedon both the continuousimagefield F(x,y) and the degradedimage field F(x,y) before
applying the integral squareerror, wherethe impulse responseHL(x,y) representsthe lateral
inhibition process, and the point nonlinearity ON{.}models the response of the eye's
photoreceptors[11]. In theFourierdomainHL is definedas

)
where o = (tol + (o2) 1/2, and O {. } = {. }1/3 is chosen. The experiments show that a = 2.6,

c = 0.0192, Oo = 1/0.114, kl = 1 and k2 = 1.1 are the suitable parameter values.

In another study [12] to find an objective measure which closely mirrors the performance of the
human viewer, the error measure

(ml°Ep= _ leil p
i=l

A
where m = number of picture elements (pels) in a picture, ei = xi - xi, xi = the value of the pel in

the original picture and _i = the value of the pel in the distorted picture, is tried for p = 1, 2, 3, 4,

6. The conclusion is that Ep.iS a very good estimate of impairment rating where the type of
distortion is additive white no_se. In the same study, another measure of picture impairment is

obtained using

i=l

to reflect the masking effect of the signal. Wi denotes the value of the weighting function at pel i
and is derived from an activity function that is a measure of the variability of the signal in the
neighborhood of pel i. Three different forms of activity functions are studied:

Amax: measures the maximum signal change between any pair of pels in a neighborhood
consisting of the pel being evaluated plus the eight surrounding pels.

Aav: sums the deviations of the same neighborhood of points from the neighborhood average

provides the weighted sum of the magnitude of the surrounding element difference (slope)
in both the horizontal and vertical directions.

In all three cases Wi is obtained from Ai so as to span a range from 1.0 to 10.0. There is also an
attempt in [12] to obtain a local measure of image quality. Relying on the postulate that the viewer
rates the image by some weighted average of the worst two or three patches, Limb divides the
image into a rectangular array of squares and calculates a local measure for each square with and
without masking. He also tries the formula
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/l'pEMp = le'_¢i Ip

in his local error analysis. The quantitative model that Limb uses for the human viewer includes

some error filtering as well. Comparison of the simple RMSE as a measure of image quality with
the best error measure predictions of the model shows that RMSE performs surprisingly well.
This results, Limb explains, from the fact that in most distorted images, quality is determined

mainly by the visibility of distortion in fiat areas where it is more visible and consequently the
effects of masking have little effect. For images where distortion is greater at edges, however, the
RMSE is claimed to be less satisfactory.

The results of a subjective evaluation on twelve versionsof a black and white image and the rank
ordering obtained with three computational measures are presented by Hall [22]. He compares the
.performance of the measures NMSE, LMSE, and PMSE, which are defined for an NxN discrete
unage as

N N

_ [f(m,n) - f(m,n)] 2

NMSE = m=l n=l
N N

_ [f(m,n)] 2
m=l n=l

N-I N-I

E [G(m,n)- G(m,n)] 2

LMSE = m=2 n=2 :
N-I N-I

where G(m,n) = f(m+l,n) + f(n-l,n)

_ [G(m,n)] 2
m=2 n=2

+ f(m,n+l) + f(m,n-1) - 4f(m,n)

N

PMSE = m=:

N

[z(m,n) - _(m,n)] 2
n--l

N N

_ [z(m,n)] 2
m=l n=l

where z(m,n) and [(m,n) are given by

z(m,n) = ln[f(m,n)] ® hbp(m,n)

and

[(m,n) = ln[f(m,n)] ® hbp(m,n)

The function h.bp(m,n) is a rectangular coordinate form of the point spread function of the HVS.
In his comparison, Hall finds that the correlation between PMSE and the subjective ranking
(obtained by using bubble sort) of the data set is higher than that of NMSE and LMSE.
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Nill [8] arrives at a quality measure in the 2-D discrete Fourier spatial frequency domain. This

measure is expressed as

B M-1 N-1

K "1 _ W i _ _ H2(r)[Fi(u,v)- Fi(u,v)] 2,
i=l u=O v=0

where B = number of subimage blocks in scene,
K = normalization factor such as total energy,

H(r) = rotationally symmetric spatial frequency response of HVS, r = Vu2 + v 2,

Fi, Fi = Fourier transform of unprocessed and processed subimage i, respectively,

M,N = number of Fourier coefficients + 1, in orthogonal u, v directions,
Wi = subimage i structure weighting factor, proportional to subimage's intensity level

variance.

Using H(r) = (0.2 + 0.45r)e "0"lSr, he then constructs the function

I A(r) I H(r) = {

0.05 r°-554,

e-9 [I lOgl0r-logl09 I]2"3

for r< 7

for r> 7

for dealing with image cosine transforms instead of image Fourier transforms. Finally, he argues
that (i) combining the HVS model with the image cosine transform will result in better performance

in image compression and image quality assessment applications, and (ii) performance in quality
assessment should also be enhanced by inclusion of the subimage structure weighting.

Marmolin [9] addresses the question of using the mean squared error (MSE) measure as a quality

criterion in image processing, and evaluates the predictive power of

Di = ai - g (xi - Yi)

where g = some processing function that determines the visibility of the error, al = a weight related
to the informative value of pixel i, and p = a factor that determines the relative importance of small

and large errors, xi = the gray level of pixel i in the original image, Yi = the gray level of pixel i in
the processed image. He investigates the performance of different def'mitions for Di, and compares
them to that of the mean squared error

MSE = (xi - Yi

The results obtained indicate that MSE is an unsatisfactory measure of perceived similarity, and

that no measure is valid for each image set used.

57



Saghri,Cheatham,andHabibi [10]state that once an image U(x,y) and its reproduction have been
subjected to the HVS model, then the mean square error

d(U,U') = N--_I[U(x,y) - U'(x,y)]dxdy,

where N is the image area or the number of pixels, may be considered as a meaningful measure of
image quality. Adopting the approach of Mannos and Sakrison, they use in their HVS model

f(u) = u 0.33

where u is the pixel intensity, and

A(fr) = [0"2 + 0.81 (5.-_5)] exp [ - (5.--_} ] ,

2_1/2

where fr = (fx2 + fy] . The corrections (developed by Nill)

c(fr) = +/41-I2f 2 + 1,
H

to the HVS model of A(fr) is then added to give the DCT version

= A(fr)C(fr).

As an alternative to the MSE, the authors propose the so-called information content (IC). The IC

of an image for a given resolution is defined as the sum of the magnitudes of its DCT spectral
components after they have been appropriately normalized based on HVS sensitivity models for
that particular resolution. The plot of IC versus the resolution provides some insight into the
quality of a given image. The preliminary results are reportedly promising, but much more
experimentation is needed to adjust the numerous parameters of the system for highest achievable
correlation with the subjective measure.

The work by Ngan, Leong, and Singh [16] describes an adaptive cosine transform coding scheme
for color images. The cosine transform coefficients are weighted by the HVS function given by
Nill to generate the coefficients in perceptual domain. To determine the parameters of the HVS
filter

H(w) = (a+bo)) exp (-co))

plots of SNR versus peak frequency are used. The SNR is defined by

511 511 [f(j,k__))_ _(j,k)]21 '= 1 ---A--- °
SNR -10log

(512) 2 k=O (255) 2 J

where f(j,k) and t'(j,k) are the original and reconstructed pixels, respectively. Their results show

that the subjective quality of the reconstructed images at a bit rate of 0.4 bit/pixel or a compression
ratio of 60:1 is very good.
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Khafizov,Fisher,andKiselyov [18] proposeanewapproachto simulatehumanvisualperception
in orderto deviseatool for measuringdistancebetweenimages.Def'mingtheerrormatrixby

E = X-Y,

whereX andY arethetwo imagesto becompared,theyrenormalizeeacherrorin E with respectto
othererrors.Renormalizationis thecoreof theirmethodandit producesa newre-estimatederror
matrix E'. OnceE' is obtained,theycomputetheLl-norm of E' asthedistancebetweenX andY.
In thecasewhenthereareonly two errorseandz in E, theformula

e'(z) = 3+a_ (e+z_, where _ = {
z(l+a s) - -,

z, ez>0

2e-z, ez<0

where a = some positive constant and s = distance between e and z, is used for re-estimating the
error e with respect to error z. The generalization to an arbitrary case is immediate. The
experiments presented demonstrate the inconsistency of the conventional RMSE together with the
success in simulating visual human perception.

Nill and Bouzas [17] present an objective, quantitative image quality measure based on the digital
image power spectrum of normally acquired arbitrary scenes. Using polar coordinates P, O the
image quality measure is derived from the normalized 2-D power spectrum P(p, O) weighted by the

square of the modulation transfer function of the human visual system A2(To), the directional scale

of the input image S(Ol), and the modified Wiener noise filter W(O):

180 0.5

E E
M z o=-18o p=o.ot

S(O1)W(o)A2(Tp)P(p, e),

where M 2 = number of pixels. In its application, a previously constructed modulation transfer
function [8] is used for the HVS. The authors point out that the power spectrum approach does
not require use of designed quality assessment targets or reimaging the same scene for comparison
purposes. Experimental verification indicates good correlation of this objective quality measure
with visual quality assessments.

3. Conclusions

Traditionally, the most reliable way of measuring image quality has been the subjective evaluation
by human observers. Because of the inherent difficulties associated with this approach, much
attention has been focused on the development of quantitative techniques for quick and objective
measurement. The image quality measure that has been commonly used in digital image
compression is the mean square error (MSE) between the original image and the reconstructed
image. It is now a well-known fact, however, that the MSE and its variants do not correlate
reasonably well with subjective quality measures [4, 5, 7-10, 21]. A major portion of recent
research is, therefore, directed towards incorporating human visual system (HVS) models into
image quality measures. This is not a trivial task because the human visual system is too complex
and an accurate model cannot presently be developed. Nevertheless, a number of experiments with
simplified models indicates that the inclusion of a model for the HVS generally produces results
that are in better correlation with the perceived image quality [4, 7, 8, 10-18, 22]. The trial models
take into consideration various recognized characteristics of the HVS, and usually have both linear
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and nonlinear parts. As we have a better understanding of the psychophysical phenomena
concerning the human vision, we will be able to develop more accurate models which, in turn, will
lead to results closer to the human response.
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Abstract. The use of digital mammography for breast cancer screening poses several novel

problems such as development of digital sensors, computer assisted diagnosis (CAD) methods

for image noise suppression, enhancement, and pattern recognition, compression algorithms for

image storage, transmission, and remote diagnosis. X-ray digital mammography using novel

direct digital detection schemes or film digitizers results in large data sets and, therefore, image

compression methods will play a significant role in the image processing and analysis by CAD

techniques. In view of the extensive compression required, the relative merit of "visually

lossless" versus lossy methods should be determined. A brief overview is presented here of the

developments of digital sensors, CAD, and compression methods currently proposed and tested

for mammography. The objective of the NCI/NASA Working Group on Digital Mammography

is to stimulate the interest of the image processing and compression scientific community for this

medical application and identify possible dual use technologies within the NASA centers.

1. Introduction

Mammography is widely accepted today as the most effective method of screening women

for breast cancer [1,2,3]. Recent studies indicate that approximately 14,000 women's lives were

saved in 1992 through mammographic screening programs. Digital mammography promises

significant improvements over currently used screen-film mammography. Its aims are to

integrate (a) solid state sensors for digital localized or full-view breast imaging to improve image

quality and acquisition process; (b) computer algorithms for image enhancement and extraction

of features such as calcifications and masses to assist the radiologist and improve screening and

diagnosis; (c) image transmission and storage techniques for telemammography to improve

patient care and efficient use of professional expertise [4,5]. The technical challenges in digital

mammography are similar to those confronted in other scientific areas, e.g. space-based sensors

and space-generated information, indicating significant possibilities for cross fertilization of ideas

and dual use technologies. The NC!/NASA Working Group on Digital Mammography has been

Center for Engineering and Medical Image Analysis (CEMIA), University of South Florida,
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established to explore application opportunities of such dual use technologies from aerospace to

medicine [4]. In the following sections, the general requirements are presented in greater detail

followed by a summary of the technologies identified until now by this Working Group within

NASA Centers and Federal Laboratories as relevant to digital mammography and with a potential

of having an impact to the problem.

2. Digital Mammography Systems

Conventional x-ray film-screen mammography is currently an accepted imaging modality

for breast cancer detection. Nevertheless there are several technical factors limiting its

performance [6]. These are the tradeoffs between contrast and exposure range inherent in the

film-based system, the influence of film grain on image noise and the inefficiency of

conventional methods for rejecting scattered x-rays. A direct method of mammographic image

acquisition in digital form can overcome these limitations and provide improved detection of

breast cancer. The target specifications of a digital mammography detector are: (1) efficient

absorption of the incident radiation beam," (2) linear response over a wide range of incident

radiation intensity; (3) low intrinsic noise," (4) high spatial resolution; 50 Itm maximum; (5) high

dynamic range; 4,000:1 minimum," (6) should accommodate at least an 18 x 24 cm field size; (7)

allow an acceptable imaging time (1-7 s) and heat loading of the x-ray tube," (8) display

capabilities: pixel matrices of 2k x 2k for soft copy and 4k x 4k for hard copy.

Various configurations for image acquisition have been considered such as area, point,

line and multiline systems. Each approach involves compromises between factors such as spatial

resolution, imaging time, readout time, detector dynamic range and sensitivity, cost, susceptibility

to artifacts, efficiency of scatter reduction, and available detector size.

Photostimulable phosphors with laser readout is an approach which has been successfully

developed for general radiography and it is possible to extract the information from such systems

in digital form. Currently, however, this technology does not provide adequate spatial resolution

for mammography [7] and, because of inefficiencies in signal collection, may suffer from

excessive image noise since the detector may not be x-ray quantum limited at mammographic

energies. Interesting developments in area detectors are currently underway. They include large

area charge-coupled devices (CCDs) [8], silicon or amorphous silicon [9,10], amorphous selenium

[11], and improvements on photostimulable phosphors. One or more of these could play a future
role in digital mammography.

An approach particularly attractive for digital mammography is through area detectors.

Such an approach is convenient and makes efficient use of the heat loading applied to the x-ray

tube. Unfortunately, area detectors which combine adequate spatial resolution and field coverage

with good signal-to-noise characteristics do not currently exist. For example, simple coupling

of a large-area phosphor to a small-area photodetector via lenses requires a large minification

factor (M). Because the efficiency of light transfer is approximately proportional to M s, this is

an inefficient means of imaging which causes the system not to be x-ray quantum limited.

Although areas detectors probably present the most acceptable long range solution to

digital mammography, it is not clear how long it will take to overcome the technical challenges

to produce a practical clinical system of this type. It is, however, currently possible to meet the

specifications described above using a scanned-beam method of image acquisition [12]. The

superior efficiency of scatter reduction inherent in a scanning system compared to an area

detector can provide advantages in terms of image SNR/radiation dose. For scanning systems,
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x-ray tube heat loading is always a concern. Scannedpoint and single line systemsare
impracticalfor this reason.

At theUniversityof Toronto(UT), aslot-beamimagingsystemfor digital mammography,
shownschematicallyin Figure 1,is currentlyunderdevelopment[ 13]. Theradiationbeamforms
a "slot" of dimensionsapproximately24cm by 4 mm. After transmissionthroughthebreast,x-
raysare incidenton a fluorescentphosphor,andthe emittedlight entersa fiber optic assembly

consisting of two fan-shaped tapers. The end of each of the 2X demagnifying tapers is ground

to a 45 ° angle at the detector input surface where the two tapers are fused together in a smooth

joint without a line that is parallel to the scan direction. The output surface of each taper is

mated to a CCD array. This arrangement provides a pixel size of 50 lain referred to the midplane
of the breast.

The image is acquired using time delay integration (TDI), by scanning the fan x-ray beam

and the slot detector across the breast in a direction parallel to the short dimension of the detector

[14]. The 45 ° joint of the input surface of the fiber optic tapers and the TDI acquisition solves

one of the major problems associated with modular detectors, which is the presence of artifacts

at their junctions. The TDI motion will average the variations in signal along detector columns

due to detector structure, including that due to the joint between modules, thereby avoiding

disturbing artifacts. A secondary advantage of the TDI acquisition is that both dark current and

detector uniformity corrections can be made by acquiring "image" data first without x-rays and

then with a uniform x-ray exposure to the detector and sorting one offset correction and one gain

factor for each of the 4096 detector columns.

Current state-of-the-art does not yet provide adequate "soft-copy" display resolution (>

4096 x 4096 pixels). A high resolution CRT display (2k x 2k pixels) will be provided with the

clinical system. This will allow rapid viewing of the mammogram as a complete image at

reduced resolution for adjustment of display parameters or with full 50 lain resolution in a region

of interest which can be positioned with a trackball over any part of the image. The image

output will also be provided as a laser-printed film image (4k x 5k pixels). The radiologist will

be able to manipulate the display on the monitor to define the display characteristics of the image

to be printed on the film.

The clinical version of the digital mammography system is still under construction.

However, some preliminary measurements have been made on a prototype. The system can

acquire a mammogram in 3-6 seconds with a dose to the breast of 0.85 mGy or less. Resolution

has been measured at 9.5 line-pairs/mm. The dynamic range of the CCD is 5000:1 and with

digitization of 12 bits a range of over 100 in x-ray exposure transmitted by the breast can be

accommodated with a "worst case" display capability of over 40 shades of gray even in the

densest part of the breast, depending on the level of quantum noise.

3. Computer Assisted Diagnosis (CAD)

CAD refers to a diagnosis made by a radiologist who takes into consideration the results

of a computerized analysis of radiographic images and uses them as a "second opinion" [4,5].

The goal of CAD is to reduce the screening load and improve the diagnostic accuracy by

reducing the number of false negative diagnoses. Preliminary results indicate that computers can

aid in recognizing abnormalities and actually point out suspicious findings such as

microcalciflcations and masses. Several computer techniques have been applied to mammograms

including: automatic (operator and image independent) enhancement methods for outlining
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specific featuressuchasnormalparenchymaltissues,microcalcifications,andsuspiciousareas
andpattern recognitionand imagesegmentationmethodsfor automaticlocalization,detection,
andclassificationof suspiciousbreastlesionsor normalparenchymaltissues.

In developing machine-assistedscreeningand diagnostic methods,one strives for
automatic techniqueswhich are both sensitiveand specific, since the consequencesof false
negative interpretation (missed cancers)and false positive (FP) interpretation (traumatic,
expensiveinvestigation)arebothserious. Thegoalof thecomputerizedmethodsis to improve
theperformanceof theradiologistby noisesuppression,detailpreservation,edgedetection,and
contrastenhancementandstandardizethemethodsfor imageinterpretation.

Automatic CAD schemesare the ultimate goal in mammography.Their development
facesproblemssuchashigh-falsepositivedetectionrates,longCPUtimes,limited databases,low
quality display devices. For sucha workstationto be successful,one requires:high quality
digital mammograms,high speed computers, large databases,efficient image processing
techniques,characterizationof imagefeaturesof normaland abnormalpatterns,understanding
of imageinterpretationprocessby radiologists[4,5]. Intelligentradiologicworkstationswill not
only retrieve,display, andprocessimagesbut will alsoprovidea wide rangeof tools tOhelp us
think more effectively aboutradiologicproblems. This implies the inclusionof case-specific
backgroundinformation,referenceimages,consultationsandnewinformationfrom theliterature.

It is anticipatedthatvariousmethodswith varyingdegreesof complexitywill be required
for optimum imageenhancement,segmentationandpatternrecognitionof the mammographic
features. The implementation of many of these algorithms will demand extensive computation

times. Very large scale integrated (VLSI) circuits and image compression algorithms may

provide a fast and cost effective technological solution to these computer vision and image

processing areas. Some tasks accomplished until now are described in the following.

A. Automated Detection of Clustered Microcalcifications

At the University of Chicago (UC), a computer program is being developed to

automatically locate clustered microcalcifications on mammograms [ 15,16,17,18]. With this

method, a digital mammogram is processed by a linear filter to improve the signal-to-noise ratio

of microcalcifications on the image. Gray-level thresholding techniques, which combine a global

gray-level thresholding procedure and a locally adaptive gray-level thresholding procedure, are

then employed to extract potential signal sites from the noise background. Subsequently, signal-

extraction criteria are imposed on the potential signals to distinguish true signals form noise or

artifacts. The computer then indicates locations that may contain clusters of microcalcifications

on the image. :: : :

For 60 mammograms used in the study, the true-positive (TP) cluster detection accuracy

of our automated detection program reached 85% at an FP detection rate of 2 clusters per image.

An ROC study was performed to determine whether this performance level could result in an

improvement in radiologists' performance when the CAD results were displayed on images. The

results of the ROC study, as shown in Figure 2, indicated that CAD does significantly improve
radiologists' accuracy in detecting clustered microcalcifications under conditions that simulate

the rapid interpretation of screening mammograms. The results suggested also that a reduction

in the computer's false-positive rate will further improve radiologist's diagnostic accuracy,

although this improvement fell short of statistical significance.

At the Center for Engineering and Medical Image Analysis (CEMIA) at the University
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of South Florida (USF), two-channel and three-channel quadrature mirror falters are developed

for image decomposition and reconstruction [19,20] and dynamic neural networks are

implemented for breast feature detection and extraction [21]. The sensitivity and specificity of

detection is very high with these approaches. A preliminary study with 15 mammograms each

containing at least one calcification cluster showed a TP rate of 100% with only 0.1 FP clusters

per image; application of these methods to a larger data set is currently under way for a fuller

evaluation.

B. Automated Detection of Mammographic Masses

Similarly, a computerized scheme is under development in UC for the detection of masses

in digital mammograms [22,23,24]. Based on the deviation from the normal architectural

symmetry of the right and left breasts, a bilateral-subtraction technique is used to enhance the

conspicuity of possible masses. The scheme employs two pairs of conventional screen-film

mammograms (the right and left MLO views and CC views), which are digitized. After the right

and left breast images in each pair are aligned, a nonlinear bilateral-subtraction technique is

employed that involves linking multiple subtracted images to locate initial candidate masses.

Various feature-extraction techniques are then used to reduce false-positive detections resulting

from the bilateral subtraction. In an evaluation study using 154 pairs of clinical mammograms,

the scheme yielded an 85% TP rate at an average of 3 false-positive detections per image.

Alternatively, tree-structured nonlinear filters, quasi-range edge detectors, and wavelets

(two-channel quadrature mirror filters) are developed in CEMIA at USF and used for

enhancement and edge detection of circumscribed, irregular and stellate masses. Preliminary

results on a small number of mammograms show improved performances of these algorithms for

noise suppression with simultaneous image detail preservation [25].

4. Telemammography

Telemammography faces all the challenges associated with the acquisition, storage,

transmission, processing and display of large amounts of data. The resolution and dynamic range

currently required for digital representation of chest and musculoskeletal radiography (image size

2k x 2k to 4k x 4k pixels, pixel intensity encoded in 10 to 12 bits) stress both storage capacities

and bandwidth capabilities of existing picture archiving and communications systems (PACS).

Data compression studies and applications have been reported in the medical literature for over

10 years. Fidelity criteria are currently based on observer performance studies using selected

case material and board certified radiologists as observers. Both lossless and lossy techniques

have been offered in commercial systems [26]. Lossy techniques are generally used in cases not

requiring primary interpretation from the lossy data set. Although standards are in the process

of being developed (American College of Radiologists - National Electrical Manufacturers

Association (ACR-NEMA) joint committee to develop a Standard for Digital Imaging and

Communications in Medicine), the struggle between lossless and lossy compression techniques

continues [27].

A screening mammography test consists of at least four images with each digital image

ranging from 16 Mpixels to 64 Mpixels with dynamic ranges of 10 to 16 bits per pixel. Such

large data sets and the fidelity requirements of mammography challenge the storage and

bandwidth capabilities of existing communication systems. Cost effective storage of these images
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and responsiveimagedelivery via telecommunicationschannelscan be facilitated using data
compressiontechnologies. Factorsof 2 to 3 for losslessstorageand transmissionmay be
supportedby existing encoder/decoderimplementationsand requireno compromisein image
fidelity. Significantcostsavingsin both researchandclinical databasestorageis likely to result.
Lossycompressionapproaches,offering highergains,will needto beevaluatedagainstobserver
performancefor visual presentationand primary interpretationof mammographicdata and
evaluatedfor applicationsinvolving additionalimageprocessingand CAD.

Most of the results reportedfor losslesscompressionachievea factor of 2 to 3 in
compressionratio. A number of carefully constructed observer performance studies have reported

successes with a "visually lossless" presentation of the data using lossy compression techniques.

Block oriented discrete cosine transforms (16 x 16 to full frame) coupled with various adaptive

encoding strategies produced compression results in the range of 20-to-30 •1 with no statistically

significant differences in radiologist performance [28,29,30,31]. Compression ratios of 2-3 have

been reported with lossiess methods, e.g. tree'based codes.

Recent mammogram compression studies using wavelets also show promise with ratios

up to 70:1 depending on the image [32]. Figures 3 and 4 present examples of mammogram

compression with Haar wavelets at different rates. The original images (Figs. 3(a) and 4(a))

contain clustered microcalcifications and are compressed at 25:1 (Fig. 3(b)) and 50:1 rates (Fig.

4(b)). Although some image detail is lost with this type of wavelet compression, the appearance

of the microcalcification clusters is not significantly affected. Furthermore, processing the

original and the compressed reconstructed images with two channel wavelets results in similar

segmentation of the calcification cluster from either image despite the losses during compression

[25]. These results indicate that image processing of the compressed data could partially

compensate for the information loss and encourage the acceptance of "visually lossless"

compressed images.

5. Dual-Use Technologies

The results presented in the previous sections are representative of current preliminary

work in digital mammography. It is anticipated that alternative approaches could be identified

or developed which may be more successful and worthy of further study. In this context, a

survey of technologies currently used in NASA Centers and Federal Research Laboratories was

undertaken and has identified several projects that are promising and may have an impact in

mammography. These projects span all the areas of interest and include: (a) scanning slot

detectors using glass or plastic scintillating micro-fiber plates as the x-ray converting material

and fiber-optic coupling to a CCD camera [33], silicon or amorphous-silicon arrays, and other

advanced digital sensors for x-ray imaging; (b) software packages and algorithms such as neural

networks, wavelets, and Bayesian classifiers used for target or object detection ; (c) lossless and

lossy compression algorithms for handling large amounts of space image data, real-time software

and systems for telemetry applications; (d) storage devices and local area networks to transmit

real-time voice and video traffic with simultaneous transmission of computer data; (e) VI.,SI

circuits suitable for implementing wavelets and neural networks for pattern recognition and

compression problems in real time; and (f) telerobotic developmefitS with potential applications

to stereotactic mammography procedures. The idea of technology transfer is, therefore, realistic,

and is expected to receive increasingly enthusiastic response.
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Figure 1. Schematic diagram of scanned-slot digital mammography system.
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Figure 3. (a) Section of original digitized mammogram with clustered microcalcifications and

(b) Haar wavelet compressed and reconstructed image at a rate of 25:1

Ca)

(b)
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Figure 4. (a) Section of original digitized mammogram with clustered microcalcifications and

(b) Haar wavelet compressed and reconstructed image at a rate of 50:1

Ca)
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Abstract

The rate at which each frame of color moving video imagery is displayed was varied in
small steps to determine what is the minimal acceptable frame rate for life scientists viewing
white rats within a small enclosure. Two, twenty five second-long scenes (slow and fast
animal motions) were evaluated by nine NASA principal investigators and animal care
technicians. The mean minimum acceptable frame rate across these subjects was 3.9 fps
both for the slow and fast moving animal scenes. The highest single trial frame rate
averaged across all subjects for the slow and the fast scene was 6.2 and 4.8, respectively.
Further research is called for in which frame rate, image size, and color/gray scale depth are

covaried during the same observation period.

Introduction

The perception of moving detail(s) on a computer monitor or TV screen is a complex
function of many optical, visual, and cognitive variables; disagreement remains concerning
the impact of specific variables. For example Farrell and Booth (1984) reported that
decreasing video bandwidth produces relatively little reduction in subjectively determined
image acuity for moving objects while Connor and Berrang's (1974) data suggest a linear
relationship between increased bandwidth and increased judged image quality. Some
investigators feel that this linear relationship results from an improvement in perceptibility
due to increasing speed of image motion across the screen. However, given the same
amount of bandwidth reduction and speed of image motion, the impairment of image
quality is greater for images having many vertically oriented edges of high contrast than for
images with only a few such edges. So both the contrast and orientation of the objects are
important.

Initially we assumed that those who work with small animals prefer to see smoothly
moving images rather than disjointed, choppy motion since smooth motion supports
improved image recognition and more correct interpretation of behavioral functions and
interactions.

A number of other earlier studies have been performed on the effect of varying frame rate
on image usefulness. Ranadive (1979) reported that video bandwidth was directly
proportional to the product of resolution (height x width; pixels per frame), frame rate
(fps), and gray scale (bits/pixel). When the viewer varied one of these three parameters at a
time (while watching his own motions controlling a robot in order to perform a simple
task), it was found that he could carry out the assigned task relatively well even though
these image parameters were degraded significantly. Performance was defined as the
quotient Tt/Td where Tt is the time to accomplish the task using full video (i.e., no
degradation) and Td is the time required to accomplish the task using degraded video. He
found that when only one of the three parameters was systematically reduced performance
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remainedat acceptablelevelsuntil a pointwasreached where the task could no longer be
accomplished at all. He also found that frame rate and gray scale could be degraded by
larger amounts than resolution before the critical performance limit was reached. Since the

total bits associated with the frame rate parameters in Ranadive's study was only 42 percent
of the total bits associated with the other two parameters this suggests that frame rate is a

very attractive candidate for reducing video bandwidth under these viewing conditions.

Deghuee (1980) had an operator adjust resolution, frame rate, and gray scale during manual
robotic control operations under total bit rate constraints. Dynamically changing these three
parameters in real time influenced performance although lower bit rates did not result in

reduced performance. Since only two bit rates were studied (10 kbps and 20 kbps) it is
possible that these total bit rate conditions were not sufficiently small enough and/or
sufficiently different from one another to produce significant decrements in performance.
Deghuee also reported that the operators did not adjust the three parameters to achieve an
image with some "optimal" quality but, rather, set each parameter to achieve some
predetermined combination of settings of the three available parameters. Because his
operators were sufficiently familiar with the appearance of changes in each of the three
parameters separately they were (probably) able to adequately anticipate the appearance of a
predetermined combination of them. Deghuee also found that the type of manipulation task
undertaken yielded the most significant differences in performance which is what we found

when comparing different levels of video compression (Haines and Chuang, 1992).

None of the studies cited above varied frame rate systematically while viewers evaluated
the health and behavior of small animals as will be done in future Space Station Freedom
experiments. This paper describes a study of the relationship between video frame rate and
perceived quality and acceptability to life scientists of moving imagery of white rats. It is
another in a continuing series of studies related to remote monitoring between earth orbit
and the ground where transmission bandwidth is limited and must be used optimally.

As Haskell and Steele (1981) state, "Only when perception is properly understood will we
have accurate objective measures. However, the day when we can, with confidence,
objectively evaluate a new impairment without recourse to subjective testing seems very
remote." The interested reader should consult (Gonzalez and Wintz, 1987; Watson, 1987;
Watson et al., 1983; Wood et al., 1971) for further information on this issue.

Method

Experimental Design and Variables. The experimental design used may be characterized as
a 2 x 3 x 2 x 9 parametric design having the following factors:

2 levels of direction of change of frame rate (increasing; decreasing)
3 levels of frame rate change resolution (5, 2, 1 fps)
2 scenes (slow animal motion; fast animal motion)
9 subjects (Ss)

Each subject (S) was presented all twelve cell conditions. Five subjects received scene 1

first while the other four received scene 2 In:st. Likewise, four subjects received increasing
frame rate trials first per pair while the other five received decreasing frame rate trials f'u'st.
Frame rates from 1.5 to 30 fps were explored.

The method of limits (Woodworth and Schlosberg, 1965) was used to quantify the effect
of video frame rate on perceived image quality. This method employs alternating series of
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decreasing and increasing frame rates where S indicated the frame rate at which he or she
could no longer accept the quality of the moving imagery and then gave a numeric rating of
image quality at each frame rate presented. Each series of trials was conducted at
progressively smaller frame rate steps: Initial trials varied in five fps steps in order to
quickly identify the approximate frame rate separating an acceptable from an unacceptable
image. Subsequent trials varied in 2 fps and 1 fps steps. Thus, S was progressively
exposed to finer and finer frame rate steps. Means of the 2 fps and 1 fps trials were
combined to determine the final threshold frame rate for each subject.
Two separate judgments were made immediately following each 25 second-long scene
finished:

(I) Was the scene of acceptable quality to make useful scientific judgments
in their own scientific discipline (yes, no)?

(2) What was the image quality? A five point scale of whole numbers was
used: (1) = image clarity completely unacceptable relative to 30 fps,
(3) = image clarity is of average acceptability relative to 30 fps,
and (5) image clarity is completely acceptable relative to 30 fps.

Video Tape Scene Description. The so-called "slow scene" showed two white rats within a
small enclosure. Almost all of the scene showed the animals performing typical grooming
activity (e.g., licking their fur, scratching with a hind leg at about 6 - 10 Hz, playfully
biting each other). Neither animal walked around very much during the scene but exhibited
typical slow limb and body movement, exploratory behavior such as sniffing, etc. The
so-called "fast scene" showed the same white rats inside the same enclosure but they were
engaged in playful behavior such as tumbling, chasing and rolling over each other, and
mock fighting during most of the scene. The angular rates of some of their movements
were so great that they appeared to be almost at the edge of blurring, viewed at 30 fps.

Procedure. A training and familiarization period was provided where the scene to be
evaluated was presented many times (typically five to seven) on an 18" color standard
television monitor at 30 fps so that the subject could become very familiar with it. An
experimenter discussed the objective of the study and answered questions during this time.
The subject was also asked to write down what scene details were of importance and which
would be used to evaluate the scene. The objective was to try to ensure that the same
scene-judgement criteria would be used throughout the study. This objective was also
emphasized verbally prior to data collection.

A decreasing frame rate test run began with a twenty five second-long scene at 30 fps
followed by another identical twenty five second-long scene at 25 fps, etc. Judgements
were made immediately following each scene presentation. This procedure continued until
the subject indicated that the scene details were no longer acceptable to them to make useful
scientific judgments in their scientific discipline. This was followed immediately by an
ascending series of trials beginning with the smallest frame rate. A ten second-long period
of gray screen occurred between each scene presentation during which S looked away from
the screen and verbalized his or her ratings and the experimenter changed the conditions for
the next trial and recorded S's ratings. Another increasing and decreasing series of trials
followed immediately in which frame rate was varied in 2 fps steps. A final series of
increasing and decreasing trials then followed in 1 fps steps. The starting fps for the 2 and
1 fps step trials were estimated on the basis of each S's judgments made during the earlier
trials.

Subjects. Nine volunteers took place, 5 male (minimum - 38 yrs; maximum = 56 yrs;
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meanage= 50) and4 female(minimum= 28yrs;maximum= 42yrs; meanage= 33.5).
All possessed20:20correctedor uncorrecteddistanceacuityandnormalcolor perception.
Two hadtakenpart in previousvideocompressionstudiesconductedby theauthors.

Apparatus. All imagery was presented on a 16" (diagonal) VGA screen of the IBM
computer. This PS/2 Model 80-321 computer has 10 megabytes (MB) of RAM and a 320
MB hard disk. The video imaging hardware installed in it consisted of Inters "ActionMedia

II" board set; an Action Media II Capture module attaches to the ActionMedia II Delivery
Board as a daughter board. (FN-1) The prerecorded analog video segments (scenes)
described above were played on a four-head, Heliquad II Model JR4500 VHS video

cassette recorder whose video output was connected to the composite RS170 input
connector of the ActionMedia II boards. They were displayed in a small inset video
window measured 5.25" (h) by 3.75" (w) on the larger computer monitor and subtended
12.5 degrees horizontally and 9 degrees vertically (of the observer's visual field).

A software application by IBM known as "Person-to-Person" was used in conjunction with
the digital imaging hardware. This application runs with OS/2's Presentation Manager and
permits live video to be displayed within an on-screen video window in the video

conferencing mode. The following video settings were used: Tint = 50%, Saturation =
76%, Brightness = 66%, and Contrast = 50%, View = single, Effects = local, Large View.
An on-screen frame rate control was used which allowed a frame rate to be selected
between 30 frames per second and 1.5 frames per second.

All video imagery was compressed using a nine bit hardware-based compression
technology developed jointly by IBM and Intel Corporation known as Digital Video
Interactive (DVI). This compression approach divides each video frame into four by four
pixel blocks and allocated one pixel representation. The pixel representation consists of

eight bits for luminance and one bit for hue (color) and saturation. This algorithm is used
within each frame i.e., no interframe encoding. Because the scenes presented here were

repeated, identical twenty five second-long segments, the only perceptually relevant
parameter that changed from trial to trial was frame rate.

Results

The results are presented in three sections: I. Mean image acceptance results, II. Highest
Frame rate at which image quality was totally unacceptable, and III. Image evaluation
criteria used.

I. Mean Image Acceptance Results. Table I presents the minimum acceptable frame rate
(averaged across all trials per S) for each type of scene. Experience category, age and sex
are also given for each S. The raw data are given in Appendix A and B. It can be seen that:

(1) these Ss accepted image quality at frame rates between 1.5 to 8.5 fps. Indeed, the three
most highly experienced Ss felt that they could obtain all needed information at rates below
1.5 fps which was the slowest rate possible from our hardware. (2) the slow versus fast
animal scene did not yield a statistically significant difference in acceptable mean minimal
frame rate across all Ss. However, four of the Ss did require a faster frame rate for the fast

scene of about one fps, (3) when these data were grouped by general level of familiarity
and experience with white rats, mean acceptance frame rate was not clearly different either
for the slow or the fast scene across these experience levels, and (4) there was no
significant difference between the male and female S's mean data.
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Table 1

MeanMinimumImageAcceptanceResults(fps)
for EachSubjectAveragedAcross2 fps and1fps Trials

Experience Subj. Age Sex
Category No.
(note1)

Slow Fast

A 7 45 M <1.5 (2) <1.5
A 1 55 M <1.5 <1.5
A 8 56 M <1.5 <1.5
B 4 28 F 4.9 6.0
B 2 34 F 3.0 4.3
B 5 38 M 3.9 4.9
B 9 42 F 8.5 6.4
B 3 56 M 5.6 3.7
C 6 30 F 5.0 5.1

Mean= 3.9 (3)
SD= 2.4

Footnotes:
1. A = 15or moreyearsof experience;B -- 5 - 15 years; C = 0 - 5 years.
2. All values labelled < 1.5 were scored as 1.5.

3. Not statistically significantly different (t test).

3.9 (3)
2.0

II. Highest Frame rate at which image quality was totally unacceptable. This numeric rating
provided a second response measure of the subjective usefulness or non-usefulness of low
video frame rates. We are mainly concerned with the single highest frame rate that was
judged to be of completely unacceptable image clarity. Table 2 and 3 provides these data.

Table 2

Highest Frame Rate Single Trial Judged to Provide a Totally
Unacceptable Image Quality for the Slow Scene

(Relative to 30 fps)

S ubj. Ascending Descending
No. Trials Trials

1 5.1 5.5
2 6.4 7.5
3 4.2 3.1
4 * *
5 5.1 10.2
6 * *
7 * *
8 13.5 3.6

9 3.6 5.2

Mean = 6.3 6.0
Grand Mean = 6.2
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* Indicatesthatsubject'sfastestunacceptableflame rate was <1.5.

In addition to the above results it was found that: (a) there were characteristic individual
differences in these numeric ratings. Each S gave consistent numeric ratings throughout
their viewing period and did not appear to change their judgment criteria. This was shown
by the fact that the same numeric score tended to be assigned to the same flame rate over
time even though they had viewed different flame rates in the meantime, and (b) the Ss
appeared to have understood and followed these rating instructions.

The grand mean data of Table 2 and 3 reinforce the previous Table 1 data with regard to the
frame rate - scene motion relationship, viz., the slower scenes required a higher flame rate
in order to be judged as acceptable by these Ss.

Table 3

Highest Frame Rate Single Trial Judged to Provide a Totally
Unacceptable Image Quality for the Fast Scene

(Relative to 30 fps)

Subj. Ascending Descending
No. Trials Trials

1 3.6 6.4
2 4.2 5.5
3 3.1 3.1
4 * *

5 * 8.5
6 * *
7 * *

8 * *

9 * *

Mean = 3.6 5.9
Grand Mean = 4.8

Footnotes:

* Indicates that subject's fastest unacceptable flame rate was <1.5.

III. Image Evaluation Criteria Used (Professional Discipline, Experience Level, and
Minimal Frame Rate). It was expected that each subject might use a somewhat different set
of criteria for evaluating the moving imagery of each scene. Such differences might reflect
differences in one's disciplinary training and professional experience. This was found to
be the case. In fact, large individual differences were found in the minimum acceptable
frame rate people selected during their scene evaluations. Having a lot of prior experience
seemed to play an important role in making these judgements, perhaps by improving one's
capability to extract subtle image cues or ignoring distracting cues that are present. For

example, the three Ss who possessed the most research experience also had prior
expenence in viewing one (1) fps images of rats in micro-gravity. They judged all scenes at
1.5 fps and higher as being entirely adequate for making their judgments of grooming
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behavior,generalweight and healthof the animals,evidenceof edemaand porphorin
(exudate)build-up around the nose,earsand eyes,reactionto allergies,fecal matter
build-uparoundthetail, andlegextensionmovements.Apparently,their prior experience
permittedthemto noticethesedetailsregardlessof how quickly anddiscontinuouslythe
imageshiftedacrossthescreen.However,it mustbenotedthatthisparticularlist of image
characteristicsis madeup mostly of static cues.Lessexperiencedsubjectsgenerally
required higher frameratesto make their judgments.This finding arguesin favor of
allowing eachuser to set his or her own frame rate, if possible,to supporttheir own
scientificrequirements.

Discussion

A minimum framerate was identified in thepresentstudywhereexperiencedsubjects
judged thequality of imagemotion (andotherdetails)asbeingacceptable to them to
adequatelyjudge theoverall statusandbehaviorof rats.Theminimal framerateaveraged
acrossall subjectswasapproximatelyfour fps for both theslow andfast scene.Minimal
acceptableframeratesvariedfrom 1.5fpsto 5.1fps for boththeslowandthefastscene.It
is clearfromthisstudythatwhatisanacceptableminimalframerateis directlyrelatedto at
leastthreecomplexfactors:(1) thetypeof visualdiscriminationsthatmustbemadefrom
the frames, (2) the natureof the moving imagesto be examined,and (3) the level of
experienceonehasin makingthejudgments.Thesevisual-cognitivediscriminationsrange
from beingvery general(e.g.,is the animalalive?)to highly specific(e.g.,is theanimal
displayingspecificsignsof allergicreactionsor vestibulardysfunction?).

More thanonethird of all of thejudging criteria cited by theseSswere staticin nature
(e.g., nasal discharge,hair texture, signs of blood, posture). It is possible that the
presentationof multiple framesper secondactually impededvisual judgmentsof these
specifickindsof imagefeatures.Thus,thereis probably aclassof staticimagedetailsof
importanceto theS,aclassof dynamicimagedetailsof importanceto theS,anda third
classin which botharerelevantin varyingdegrees.This possibility suggeststheneedfor
furtherexperimentationin whichvariousmixesof cuesrangingfrom staticonly todynamic
only bepresentedatdifferent frameratesto seeif it is possibleto identify minimal frame
rateswithin eachclassof imagedetails.

Visual Integration of Object Motion. The perception of a moving image on a TV screen is
actually the result of visually smoothing a series of time sampled (strobed) still image
frames into an apparently continuous movement. As individual picture elements (pixels)
making up the full frame each change in intensity and color the eye attempts to integrate
them and to identify the meaning of this constantly changing array of luminous dots.

Image details may or may not appear to move across the screen depending upon many
variables. For instance, the combination of visual angle and duration over which adjacently
illuminated pixels appear to change determines whether the image is seen as a strobed
(jumping) or continuously (smooth) moving image. Watson et al. (1983) has found that
image sampling frequency (Hz) increases almost linearly with an increase in the angular
velocity of an image seen on a screen in order to produce smooth motion rather than strobe
motion. Images translating at about one degree arc per second must be sampled at about 30
Hz in order to appear to be moving smoothly.

It is interesting to speculate whether minimal acceptable frame rate may be related somehow
to the time required for the visual system to extract information from a scene during a single

glance. For instance, Senders et al. (1964) reported that the mean visual dwell time (FN-5)
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for visualinformationaldisplayshavinginformationbandwidthsfrom 0.05to 0.48Hz was
0.4 sec. Interestingly,severalotherstudiesof eye fixation dwell time on displaysalso
have shown a mean duration of about 0.4 secondacrossa wide range of display
bandwidths(HarrisandChristhilf, 1980;Carbonellet al., 1968).

Subject Variables. There is little doubt that the human visual system is remarkably adept at
extracting useful information from relatively degraded video imagery. If resolution is
degraded, for example, perception probably shifts to lower spatial frequencies which
incorporate slightly higher visual contrasts in order to perceive image translation across the
scene.

Application of Data to Space Station Freedom Operations. The planned video downlink
rate capacity for Space Station Freedom will be variable in the following five steps (Corder,
1992):

60 (full frame) fields per second
30 (1/2 flame) fields per second
15 (1/2 frame) fields per second
7.5 (1/2 frame) fields per second
1.875 (1/2 frame) fields per second

41.1 MB/s
20.8 MB/s
10.5 MB/s
5.3 MB/s
1.5 MB/s :

Assuming a full flame video image format of 500 x 400 x 8 bits and 30 fps the required
data rate would be 6 MB/s. Even without digital image compression, use of 7.5 fps (which
is a higher frame rate than almost all of the present Ss accepted) would reduce the downlink
data rate by a factor of 4 relative to the 30 fields per second data rate given here. If the
Tracking/Data Relay Satellite's (TDRSS) Ku band maximum downlink rate is 43 Mb/s
(5.37 MB/s) then without video compression it would support only one (NTSC) video

channel. Clearly, the downlink bandwidth of all channels must be reduced significantly in
order to be able to support all of the required control and monitoring functions planned.
Reducing frame rate appears to be an acceptable means of accomplishing this objective in
some research situations.

Conclusions

We conclude from these findings that video bandwidth may be reduced from SSF to the

ground by a factor of more than 4 times the normal 30 fields per second (approx. 4 fps)
and still provide an acceptable image to the majority of scientists and animal care personnel.
Observer prior experience plays a central role in determining minimal acceptable frame rate.
It is not yet clear whether these data can be extrapolated to other life science animal
specimens.
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Footnotes

1. One of the present test subjects served as an investigator on the SL-3 project and had a
great deal of experience viewing 1 fps scenes.

2. ActionMedia H boards digitize and compress a video signal for display on a monitor
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and/orstorageon a hard disk. The boards used here employed a dual-chip, B-series
i750 Video Display Processor.

3. Integration here refers to performing content associations and storing this
information in visual memory.

4. The Nyquist theorem states that it is necessary and sufficient to visually sample
signal at two times its bandwidth.

Visual dwell time refers to the duration over which no eye movement occurs.
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Abstract. A general approach to compression of diverse data from

large scientific projects has been developed and this paper

addresses the appropriate system and scientific constraints

together with the algorithm development and test strategy. This

framework has been implemented for the COsmic Background Explorer

spacecraft (COBE) by retrofitting the existing VAX-based data

management system with high-performance compression software

permitting random access to the data.

Algorithms which incorporate scientific knowledge and consume

relatively few system resources are preferred over ad hoc methods.

COBE exceeded its planned storage by a large and growing factor and

the retrieval of data significantly affects the processing,

delaying the availability of data for scientific usage and software

test. Embedded compression software is planned to make the project

tractable by reducing the data storage volume to an acceptable

level during normal processing.

1. Introduction

Large scientific projects generate diverse scientific, engineer-

ing and instrument housekeeping data at rates that frequently

exceed the capacity of storage and retrieval devices. Although

many techniques have been proposed in the data compression

literature [i], almost all are based on data models that make

predictions based on a few successive pixels or a few hundred

images in a training set. These data models do not incorporate the

a-priori scientific knowledge of approximate relations between data

set elements (physical laws) or the known accuracy requirements for

specific elements of record structures. Such knowledge reduces the

specific entropy of the data, enabling an effective trade-off in

wall-clock processing time between additional cycles for on-the fly

compression and decompression and a reduced input-output load.

If the system response is sensitive to the network load (when the

network is saturated) reduction in storage complexity may be as

critical as reduction of the overall load. Furthermore, fixed

mechanical disks are an expensive resource and the risk of

catastrophic data loss increases dramatically with the number of

disks on the system. Local SCSI disks are sometimes suggested to

represent inexpensive storage media but the access time is

relatively long. Mass storage devices such as magnetic tape juke

boxes can be less than ideal as the tape quickly stretches with

use and becomes unreadable after a short time (i year) compared to

the typical project lifetime (20 years) necessitating frequent and

expensive data migration.
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2. COBE Science Goals and Achievements.

The COsmic Background Explorer (COBE), NASA's first satellite

devoted to the study of cosmology was launched on 18 November 1989.

The cryogein period of the mission covered the time from 21

November 1989 to 21 September 1990. COBE carries three instruments:

the infrared experiment DIRBE, the anisotropy experiment DMR and

the spectrum experiment FIRAS, of which DIRBE and DMR are still

operating [2].

All three instruments have achieved their preliminary goals.

FIRAS has shown the far infrared background to be isotropic to

0.03% and consistent with a black-body radiating at 2.726 K.[3]

DMR has revealed further evidence of the Big Bang theory of

cosmology in the form of a spectrum of ripples at the level of 1

part per million after known astrophysical foreground sources have

been subtracted from the integrated signal. DIRBE has placed upper

limits on the spectrum of the diffuse celestial background which

are more stringent than previously available [4]. DIRBE and FIRAS

have contributed to Galactic astronomy by mapping the stars in the

direction of the Gaiactic core [5], modelling the physical

conditions in the interstellar medium [6] and making a determina-

tion of 6he radial distribution of NII ions [7]. DIRBE has also

contributed to interplanetary astronomy by providing an accurate

phenomenological model of the Zodi Light from the interplanetary

dust cloud [8].

Figure 1 shows the DIRBE annual average i00 micrometre map which

is an example of the most detailed map data with highest contrast

and largest dynamic range.

3. Ground Segment Architecture

The ground segment computer architecture consists of a VAXcluster

linked by an Ethernet network bridged by a hardware-based repeater.

It supports approximately I00 users in the daytime, production work

at all hours, and system management and monitoring activities [9].

The HSC's serve i00 Gbytes of magnetic disk to the cluster, which

consists of four mainframes and thirteen workstations. Interactive

deveiopment-:_n_:anaiysis work is done on the workstations which

provide almost all the CPU power in the cluster. The mainframes are

reserved for d_sk serving and batch processing. With the advent of

truly high performance workstations, the I/O demands are also

increased and disk serving has become a critical load to all but

the most powerful mainframes. Two DECStation 5000 workstations are

currently available and are linked to the VAXcluster using NFS.

The data sets generated by the project pipelines are available to

remote users and PCs through a data server and can be manipulated

using IDL which is in widespread use on the VAX/VMS platforms.

4. Project Data Sets

The COBE satellite carries three experiments designed to make

high precision measurements of the diffuse celestial background.
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The detectors are stable and data sampling highly redundant.

The observed sky is faint, low-contrast and smoothly variable

except for one instrument (DIRBE) which sees stars at fixed map

coordinates. FIRAS and DIRBE report glitches, many of which arise

during passages over the South Atlantic Anomaly region.

The processed data currently totals 380 GB with an effective

expansion factor of (4-16) over the raw data which depends on the

instrument system. The project standard data sets number about i000

and may be classed as sky maps, time-ordered data and time-tagged

data. These data sets combine scientific with engineering data.

The Project Data Sets are required to represent data free of

instrumental signature and the Analyzed Science Data Sets are

intermediate to further scientific interpretation.The Astronomical

Databases [i0] contain external survey data converted to the COBE

sky cube pixelization scheme [11],[12] at the resolution and beam

pattern of the COBE instruments. The sky cube is an approximate

equal-area projection on the sky of the faces of an inscribed cube.

The equal-area property is ensured by the curvilinear coordinate

system ruled on each cube face.

COBE data sets are directories of files. Intensity, spectral and

polarimetric data are stored in area quadtree maps together with

ancillary information. Offsets into each map corresponding to each

level of resolution are stored in "index" files. Each pixel may

contain one or more records with the same field structure.

Data destined for the DIRBE experiment are stored at sky cube pixel

level with 9 or more levels of resolution available in an image

pyramid obtained by spatial averaging; data intended for FIRAS and

DMR are stored at 6 or more levels of resolution. Data records are

fixed length, defined by a Record Definition Language (RDL) file

interface to the VAX Common Data Dictionary. RDL and its Record

Definition Compiler were developed by the COBE project [9].

Figure 2 shows an example RDL for the DIRBE Daily File.

5. Data Compression Requirements

Data Compression is intended to simplify the task of systems

management, data migration and recovery from catastrophic disk

failures, reduce expenditure on storage devices and improve the

data retrieval rate by a substantial factor dependent on the non-

linear response of the saturated network.

The COBE Ground Segment Software System [9] consists of

approximately 500 packages known as facilities which process the

data in pipelines for each subsystem from raw telemetry to Project

Data Sets. Access to the data is provided by the Data Management

subsystem heavily dependent on a project-specific access system

known as COBEtrieve.

Interviews with the Principal Investigators and Contract Leaders

defined requirements as follows:
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Provide compression transparently without changing the
application software.

Compress instrument pipeline and science analysis data products
to better than (16 to 50)%.

Process compressed data at a throughput not less than 90% of

uncompressed data processing (possibly faster).

Preserve required accuracy of instrument

scientific data (as judged by validators).
housekeeping and

Exceed bitwise reliability of 10 -13 on average (flawless

compression of 300 GB). Several times this factor is desirable.

Support full random access to file records.

Provide a capability to select specific classes of data for

compression.

Preserve overlaps in separately-processed data segments.

Store search keys (time code, pixel address) in clear codes.

Provide a capability to select a compression scheme for each
field of a data record.

Optimize choice of compression scheme combining a-priori

with adaptive knowledge of data.

6. Implementation

Initial tests with public domain software (Unix-compress) and

commercial PC-based hardware (Stacker, a product of Stac

Electronics) demonstrated poor performance. The software was far

too slow to keep up with the processing and Stacker compressed the

DIRBE Daily Files (the largest archived files with the greatest

retention time) by < 2%. Although the offlining of disk volumes

provided by the FlashDAT 4mm tape device (a product of Winchester

Technologies, Inc.) has been highly effective (factor of 4

improvement in data migration rate with a compression factor of 2),

the requirements listed above necessitate customized software.

The following decisions were taken :

Create standalone, callable and embedded software interfaces.

Use existing fixed-length file record structure.

Use existing search algorithms to retrieve data.

Store compression parameters in file header without increasing

the number of open files. This averts a resource lock-management

problem in an already full file system.



Adopt an incremental build strategy: simple, well-trusted
algorithms followed by powerful sophisticated methods.

Assess all algorithms on samples of all types of project data :
[Quadtree Sky Map, Time-Ordered, Time-Tagged].

Optimize tradeoff between throughput and compression factor via
overall measured storage savings.

Store data for medium-term via deeply-compressive but slow
methods assisted by accelerator board (single files recovered in
<< 8 hours).

Offline project data via hardware-based compression methods.

Data shall not be delivered in compressed form to external
users.

7. Compression System Design

Since the data access is heavily dependent on COBEtrieve and all

the I/O system calls are localized, a natural solution is to embed

compression software between the data management and I/O layers.

This software compresses and decompresses data from the stored

format to the fixed-length record structure understood by the data

management software.

The writing of compressed data may be toggled via a system-wide

logical name. The reading of compressed data is always enabled.

The compression method specification is via command-line qualifiers

which may be stored in the compressed file header and parsed to

control the decompression of archive files. These qualifiers drive

the command line, callable and embedded interfaces uniformly.

Currently, the record length and connect-time attributes of

recognized standard data sets are stored in a VAX Datatrieve data

base (DAFS). When a file is opened, this data base is queried and

if the data set name and record length are matched, the data are

accessed. Separately-processed time-overlapping data segments are

stored in separate files but the data streams are merged based on

the most recently-processed data from each segment.

Similarly, we may define a compression data base (CMPR) that

specifies the command-line qualifiers (including the record length)

which will be parsed to control the (de)compression of archive

files. Since multiple compression method types and offset endpoints

are defined for multiple offset ranges, this data may require

updating on every change of data set Record Definition Language

specification. Ideally, this information would have been provided

by the scientist when the data sets were being designed.

The compression system permits full upwards

compatibility with existing files and catalogs.

length matches the entry in the DAFS data base,

and downwards

If the record-

file is assumed
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uncompressed. If the entry does not match, the file header is

parsed for the decompression parameters. The compression parameters

for standard data sets stored in the CMPR data base may not be

overridden by users (the command-line qualifiers will be ignored)

so the compression technique for a standard data set is under

configuration control.

If a file is compressed from the DCL command level, a system-

unique temporary file is used to store the data. If the compression

is successful (a shorter file is created), the original file is

replaced by the temporary file. All permanent attributes except the

record-length are retained. Since the file name, version,

extension, creation and modification dates are unchanged, the

archive catalog need not be updated. Since the modification date is

unchanged, VMS BACKUP software will not restore any offlined

version of the same file, reducing the offline storage volume.

8. Compression Method Specification

The compression methods so far envisaged consider a packet of

successive records ("chunk') as an image to be compressed. The

methods may require parameters (such as a range), positional

information (matrix partition) and a specification of the number of

records in the buffer. Although non-optimal, each block ,delimited

by a specified field offset range, is constrained to a fixed number

of records in the buffer. The block may be scanned in column order

("transposed"), row or rectangular image and variable-length output

is reformatted and re-aligned to fixed-length records. An optional

list of reference filenames may be provided and a list of floating

point parameters may be required.

The following generic compression schemes are provided :

Field : data fields are compressed by re-quantization.

Scanline : data in a "horizontal" or "vertical" range of scanlines

is compressed by methods which consider correlations

between adjacent data elements. The FULL vertical

(time-series) scanline is compressed.

Block : data in a non-overlapping, multiple range of offsets is

compressed by methods which consider the correlations

between neighboring elements. The operators may be

causal, acausal or semi-causal in scanline order.

9. Compressed Data Record Structure

The existing data management system is based on a fixed-length

record structure with field offsets defined in an RDL file. The

record-length and connect-time file attributes are stored in a

database under Configuration Management control. Since many data

compression methods generate variable-length records, it was

necessary to devise a scheme permitting full random access without

wasting storage on record filler bytes.
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Since the time code and pixel address label fields are strictly

monotonically increasing (except for certain data sets not destined

for compression) this may be achieved as follows:

Figure 3 demonstrates the separate compression of field offset

ranges for "packets" of fixed-length records with fixed-length

output records supporting full random access by time code and pixel

address. The status byte indicates whether the record is compressed

or not and the "lookback" word points to the beginning of the

output record. The shaded areas denote successive samples of data

in pre-defined offset ranges. Subrecords are broken across the

record boundary with the label fields deferred to the beginning of

the next output record. In this manner, if the search finds a label

value the "lookback" field refers to the start of the compressed

data associated with that label. The result is that these fields

are never split across record boundaries and no space is wasted.

A restriction is placed on the length of an output record that it

must not exceed the length of the "lookback" field plus the length

of the status field. The output record length is constrained to

always exceed this value so no input record may span more than two

output records. Any output record that exceeds this limit is

transmitted in clear codes. Any compressed file larger than the

original is transmitted in uncompressed form.

i0. Random Access to Compressed Data.

The efficient search for matching time codes in large time-ordered

files requires the insertion of an internal time code index list at

predefined records in the uncompressed file. When a file is opened

the first index list is read into virtual memory. If the desired

record is not in the decompressed buffer, the bounding time codes

are searched for in the index list to minimize the I/O. If the time

codes are not found in the current index list, the next list is

read into memory. The search uses a hunt and locate method, where

the initial record is predicted from the average compression factor

for the file, determined from the compressed file size and the

number of uncompressed records multiplied by the uncompressed

record length stored in the archive catalog. The exponential search

is carried out until the time codes are bracketed when a binary

search is used to locate the exact compressed record. The

compressed record buffer is searched linearly for the matching time

codes. The reduction in I/O by using index lists leads to an order

of magnitude improvement in search time.

The search for matching pixel addresses in a sky map proceeds

similarly except that an index file pointing to the first logical

(uncompressed) record under a pixel is already available. Two lists

of corresponding logical and physical (compressed) record numbers

are stored in the file. In both cases, the index lists are highly

compressible.
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II. Compression Algorithms

The initial algorithmic toolbox will contain range quantization,

run-length coding and zero suppression methods. The range

quantization is an approximate method currently used by DIRBE which

recognizes the sentinel values flagging noisy data.

Planned subsequent development includes nested Chebyshev

polynomials (smoothly-variable data), a modified Huffman code,

the Haar Transform followed by quadtree bit plane encoding,

variants of the Lempel-Ziv-Welch substitution schemes with static

codebooks, stochastic models such as the Autoregressive Integrated

Moving Average (ARIMA) schemes and tree-structured Vector

Quantization based on static codebooks. Since the data distribution

is almost stationary with time, a static codebook may be stored on

in memory for codebook-based algorithms. Usage of the Vector

Quantization algorithms will depend on available resources and will

probably be restricted to static archives.

12. Worked Example

The DIRBE experiment was operated with cryogenic cooling for 41

weeks, creating 80MB per day for a total of 5.5GB processed data.

Clearly, this RDL was devised with each field carefully specified

for scientific usage and it is not necessary to make minimalist

assumptions about the nature of the data. This RDL specifies a

mixture of scientific and engineering data and some fields must be

transmitted in clear codes (search labels), exactly (flags),

approximately (photometry) or are noisy and hence incompressible

(e.g. pixel subposition).

The records are 140 bytes long and in quadsphere sky map format

[i0]. The label field is the "Pixel_No" which is referenced

explicitly in the user software as a pixel-number-offset argument

to the access software. There are 16 floating-point photometric
bands.

Direct usage of "Unix-compress" leads to a compression factor of

25% which takes several hours to compress one sky map on a

workstation.

DIRBE has already decided that a logarithmic range compression

scheme which sentinelizes glitchy data (flagged in a previous

pipeline process) is sufficient to convert the floating-point

photometry to 16 bit integers on a field-by-field basis. Further

compression may be achieved particularly for data which are not

glitchy (Glitch Flags) or taken in a particle radiation zone

(Radiat_on_Cont). This represents about 75% of the data. This

compressible data may be vector quantized with a suitable codebook

derived (perhaps) by the Linde-Buzo-Gray algorithm based on a

training set extracted from a typical daily file. A normalized

codebook would be the most flexible. At best, this approach would

yield ~ 2 bytes per array of highly-correlated photometry bands.
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The ratio of the daily photometry to the annual average value

under a pixel is expected to have reduced dynamic range and be even

more compressible. The "pixel_no" fields and the ancillary angles

between the DIRBE boresight and celestial objects which vary slowly

under a pixel are -50% compressible via a Modified Huffman Code in

vertical scan mode. The overall compression factor is about 50%.

In another example, one FIRAS facility accesses time-ordered data

via extensive keyed-read operations which involve searches which

currently create the largest single network load.

The files are approximately 16MB consisting of 8 byte time codes

together with - i0 000 bytes of data. Each search step (there are

typically about 6 per keyed read) reads the whole record to locate

the time code. The compressed data which contains the internal time

code list may be searched - 30 times faster as the total I/O is

reduced to 10% of its original value.

13. Validation and Testing

Software quality has been assured by regression testing in an

independent environment to ensure that goals of functionality,

accuracy and performance have been met. Code inspection has been

used to ensure the robustness and maintainability of the code and

documentation.

The in-house validation team will provide quality assurance for

the compressed data products using the same formal project accuracy

requirements as for original data.

Tests of file migration to/from all available media (including

4mm and 8 mm magnetic tape, magnetic and optical disks and 9-track

tape) indicate that the compressed data files are fully compatible

with VMS BACKUP and COPY software and that the project-specific

data migration software facility is effective with compressed data.

14. Summary and Conclusions

A general approach incorporating scientific knowledge seems

appropriate for the Space and Earth Science Data Compression

application. Inline data compression techniques developed for the

COBE project may help the project achieve its goals and be useful

to other workers in this growing field.

15. Recommendations for Future Development

Compression functions should be specified at the same time the

data sets are defined. An optimal implementation may consider the

data as a linked list of object classes for each data field which

specify overloaded (de)compression functions invoked in the

constructor for each class.

A Data Compression Designer Expert System could capture the

knowledge of domain experts and recommend appropriate functions.
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RECORD BCI CIRSSM BCI CIRSSM

Offset Length Description

0 B SCALAR Time
8 4 SCALAR Pixel no

12 64 ARRAY

76 1 SCALAR

77 1 SCALAR Pixel_subpos
78 4 SCALAR Next obs
82 4 SCALAR Prev obs

86 4 ARRAY Sun re BS

90 2

92 2
94 2

96 2

98 2

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR BS re Vel

100 2 SCALAR Azimuth re Vel /WORD
102 6 ARRAY Attack vector /WORD/DIM=3
108 2 SCALAR FOV A_imuth /WORD
110 2 SCALAR Longitude /WORD
112 2 SCALAR Latitude /WORD
114 2 SCALAR Altitude /WORD
116 3 ARRAY Mag_Field /BYTE/DIM=3
119 4 ARRAY Moon re BS /WORD/DIM=2
123 2 SCALAR Sun_MoonAngle /WORD
125 2 SCALAR Moon Distance /WORD
127 4 ARRAY Jupi_r re BS /WORD/DIM=2

131 4 ARRAY Earth_light_cont /WORD/DIM=2

135 1 SCALAR Pixei_subsubpos /BYTEU

136 1 SCALAR Radiation cont /BYI'EU
137 2 SCALAR Glitch FI;gs /WORDU

139 1 SCALAR ATT_FI;gs /BYTEU
140 END RECORD

w

! Complete IRS Sky Maps

/ADT!Time of m_ddle of observation.
/LONG!Pixel number of observation

t

Photometry /FLOAT/D[M=16!Detector observations

Approach_vector /BYTEU!Forward looking = 1
}Backward looking = 2
(referenced t,o SC velocity)

/BYTEU!Sub-pixel containing DIRBE LOS

/LONO!Pixel number of next observation
/LONG! previous

/WORD/DIM=2
!Word 1:Solar elongation.
!Word 2: Relative azimuth of sun

SC Axis re Zenith /WORD!Angle between COBE -X axis
!and the zenith vector

BS re Zenith /WORD!Angle between OIRBE boresight and
BS re Horiz /WORD!Angle between earth horizon and

! DIRBE boresigbt.

SC_Axis re Vel /WORD!Angle of COBE -X axis relative
!to velocity vector

/WORD !Angle between DIRBE boresight
!and S/C ve|ocity vector

TOTAL LENGTH OF RECORD: 140 BYTES

TOTAL NUMBER OF FIELDS: 29

Figure 2. Record Definition Language for DIRBE Daily File.
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FRAMEWORK

IS LT P I.IImI I

SLT P

s L T P I

Separate compression of fieldoffset ranges for "packets" of flxed-lengthrecords

with fixed-length output records supporting fullrandom access by time-tag

and pixel number. The status byte indicateswhether the record is compressed or

not and the "lookback"word points to the beginning of the output record.The

shaded areas denote successlve samples of data in pre-deflned offset ranges.

The notation "5 L T P" denotes status, lookback, tlme-tag and pixel number.

Figure 3. Separate compression of field offset ranges.
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PROPOSED DATA COMPRESSION SCHEMES FOR

THE GALILEO S-BAND CONTINGENCY MISSION *

Kar-Ming Cheung Kevin Tong

Communications Systems Research
238-420

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, CA 91109

Abstract. The Galileo spacecraft is currently on its way to Jupiter and its moons. In April 1991,

the high gain antenna (IIGA) failed to deploy as commanded. In case the current efforts to deploy
the HGA fails, communications during the Jupiter encounters will be through one of two low gain

antenna (LGA) on an S-band (2.3 Ghz) carrier. A lot of effort has been and will be conducted

to attempt to open the HGA. Also various options for _mproving GaliMo's telemetry downl_nk

performance are being evaluated in the event that the HGA will not open at Jupiter arrival.

Among all viable options the most promising and powerful one is to perform image and non-image

data compression in software onboard the spacecraft. This involves in-flight re-programming of

the existing flight software of Galileo's Command and Data Subsystem processors and Attitude

and Articulation Control System (AACS) processor, which have very limited computational and
memory resources. In this article we describe the proposed data compression algorithms and give

their respective compression performance.

The planned image compression algorithm is a 4 x 4 or an 8 x 8 multiplication-free integer cosine

transform (ICT) scheme, which can be viewed as an integer approximation of the popular discrete

cosine transform (DCT) scheme. The implementation complexity of the ICT schemes is much lower

than the DCT-based schemes, yet the performances of the two algorithms are indistinguishable.

The proposed non-image compression algorithm is a Lempel-Ziv-Welch (LZW) variant, which is a

lossless universal compression algorithm based on a dynamic dictionary lookup table. We developed

a simple and efficient hashing function to perform the string search.

1. Introduction

The Galileo spacecraft, which was launched in Oct 1989, is now on its way to Jupiter. Its

mission includes releasing a probe into the Jovian atmosphere, Io flyby, probe data capture and

relay, Jupiter orbital insertion, and 10 satellite encounters (Ganymede, Callisto, Europa). The

Galileo project involves over 20 years of effort. In April 1991, when the spacecraft first flew by

Earth, the Galileo team commanded the spacecraft to open the 1.8m high-gain antenna (IIGA).

However, the HGA failed to completely deploy. All indications are that 3 of the 18 ribs are stuck to

the antenna's central tower. Several unsuccessful attempts have been made to free the stuck ribs.
A major effort is planned for December 1992 to perform hammering or pulsing of the deployment

motor to try to free the ribs. If the HGA fails to deploy, the only way to communicate between

* The research described in this paper was carried out by Jet Propulsion Laboratory, California

Institute of Technology, under a contract with National Aeronautics and Space Administration
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Earth and the spacecraft is through the use of one of the two low gain antennas. If the current

configuration (ground and spacecraft) remains unchanged, the telemetry data rate will be 10 bits

per second at Jupiter arrival (1995), compared to the expected data rate of 134 kbits per second

in the HGA configuration. The amount of data that can be returned would be drastically reduced.

A study [1] was conducted from December 1991 through March 1992 to evaluate various options

for improving Galileo's telemetry downlink performance in the event that the HGA does not open

by Jupiter arrival. Among all viable options the most promising and powerful one is to perform

image and non-image data compression in software onboard the spacecraft. This involves in-flight

re-programming of the existing flight software of Galileo's Command and Data Subsystem (CDS)

processors and the Attitude and Articulation Control System (AACS) processor, which has severely

limited computational and memory resources. The software has to be compact and computationally

simple. A lossy image compression scheme is proposed that can give a wide range of rate-distortion

trade-off for the image data, representsover 70_ of the data to be returned by the mission. The rest
of the data comes from various spacecraft instruments. This Caneither be compressed by using

instrument'specific compression schemes or by using a proposed IossIess_ universal compression
algorithm. In this article we describe the proposed image compression scheme and the universal

lossless compression algorithm and give their respective compression performances.

The proposed image compression algorithm is a 4 x 4 or an 8 x 8 multiplication-free integer cosine

transform (ICT) [2], which was first-proposed by Cham. The ICT can be viewed as an integer
approximation of the popular discrete cosine transform (DCT) scheme. The 8 × 8 multiplication-

free ICT will be implemented in software Using the more powerful AACS processor and the 4

x 4 ICT will be implemented in software using several CDS processors as backup. The ICT

schemes have much lower implementation complexity and give indistinguishable performances when

compared to the DCT schemes.

The proposed non-image compression algorithm is a Lempel-Ziv-Welch (LZW) variant [3], which
is a lossless universal compression scheme. Due to the severe limitations of the CDS processors,

we cannot use the more sophisticated existing hashing functions [3]. We developed a simple and

efficient hashing algorithm to perform string search. This hashing function uses a total 1802 bytes

of memory for a codebook of size 512 bytes, and requires on the average only 3 16-bit comparisons

per input byte.

The communication scenario described in this article is unique. Rather than a typical data com-

pression paradigm as in industry where a sophisticated encoder and simple decoder are desired,
the Galileo HGA anomaly situation requires a very simple compressor onboard the spacecraft.

The decompressor, which is on the ground, can be reasonably complex. Many of the compression

techniques described in this article are not novel and are modifications and enhancements of some

existing algorithms to adapt to the tIGA anomaly scenario. The main goal is to simplify the

onboard compressor implementation.

The rest of this article is organized as follows: Sections I, II, III, IV, V, VI and VIII describe

the ICT lossy image compression scheme. A more in-depth discussion of the relationship between

ICT and DCT is given in Section II. The interplay between the orthonormal transform stage (any

orthonormal transform, not just DCT) and the quantization stage is explored in Section III. The

mathematical properties and a general construction scheme for the multiplication-free ICT matrix

are given in Section IV. A general construction procedure of ICT matrix is described in SECTION
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V. Examplesof 4 × 4, 8 × 8, and 16 × 16 ICT matrices are given in Section VI. The rate-distortion

performance of the ICT schemes for the Galileo S-Band Contingency Mission (4 x 4 and 8 × 8)

is described in Section VII. Section VIII gives an overview of the LZW algorithm. Section IX
describes the LZW scheme we used in the Galileo LGA mission. Section X describes the novel

features of the Galileo LZW implementation.

2. DCT Versus ICT

The discrete cosine transform (DCT) is regarded as one of the best transform techniques in image

coding. Its independence from the source data and the availability of fast transform algorithms
make the DCT an attractive candidate for many practical image processing applications. In fact the

ISO/CCITT standards of image processing in both still-image and video transmissions includes the
two-dimensional DCT as a standard processing component in many applications. For still-image

compression, the transform-based scheme consists of three stages: the data transform stage, the

quantization stage and the entropy-coding stage. For video compression, an additional motion-
compensation stage with feed-back is included. The enormous popularity of the DCT in image

compression provides the driving force for researchers to develop efficient hardware and software

implementations for the DCT.

The commercial acceptance of the emerging JPEG and MPGE Standards, which uses an 8x8 block

DCT has created a need for an efficient DCT algorithm. A lot of effort has been devoted to the

pursuit of reducing the computational complexity of the DCT. New algorithms have already been

proposed[6][7]. The idea of incorporating the scale-factors of the transform process as part of the
scalar quantizer has also been suggested in the recent literature [6][7]. All these efforts gear towards

reducing the total number of floating-point or fixed-point multiplications and additions used, with

the emphasis on reducing the number of multiplications.

Recently Cham [2] took a different approach and proposed a new 8-point transform called the

integer cosine transform (ICT). ICT requires only integer multiplications and additions, making

it much simpler to implement than the DCT. An ICT chip was fabricated and was proven to be
efficient in both silicon area and speed. The elements in an ICT matrix are all integers, with sign

and magnitude patterns that resemble those of the DCT matrix. The similarity of the ICT matrix

to the DCT matrix, together with the orthogonality property of the ICT (CC _ = A, where C is

an ICT matrix and A is a diagonal matrix), guarantee that the ICT as well as its inverse possess
the same transform structure as the DCT, thus allowing the use of some fast DCT algorithms to

compute a fast ICT [2].

Although the 8-point ICT proposed by Cham performs remarkably well, it is quite ad hoc. In this

article we put ICT into a more formal mathematical setting and generalize Cham's idea to any N-

point ICT. The mathematical properties of orthonormal transforms including ICT are investigated

in the following sections. Since ICT is separable and the extension of the one dimensional ICT to

two dimensions is straight-forward, this article focuses on the one dimensional case.
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3. Orthonormal Versus Orthogonal Separable Transforms

An N × N 1-D matrix M is said to be orthonormal if and only if MM T = I, where I is the identity

matrix. An N x N 1-D matrix C is said to be orthogonal if CC T = A, where A is a diagonal

matrix. It can be shown from basic linear algebra that for any N x N orthogonal matrix C, there

exists an N x N orthonormal matrix M and an N x N diagonal matrix A such that M = v/_C.

It can further be shown that C -1 = e TA and M -1 = C -1 v_ -1 = CTAv_ = CTv f_.

The corresponding 2-D N 2 x N 2 orthonormal separable transform matrix is

M ® M = (v/A-C ® v_C) = (vfA " @ vfA)(C ® C), (1)

where X @ Y denotes the tensor product of the matrix X with Y, and the corresponding 2-D
N 2 x N 2 orthonormal inverse transform matrix is

(M®M)-I=(AI-I®M-')=(CTv_®CTv/_)--(cT®cT)(v/_®V/'_), (2)

The matrix v_ ® v_ is diagonal. Therefore when the 2-D orthonormal transform M ® M is

followed by quantization, the diagonal matrix v/_'@ v_ can be absorbed in the quantization stage

and, only the product by the orthogonal matrix C®C is computed in the transform stage. Similarly
on the decoder side, _ ® v/_ can be absorbed in the de-quantization stage, and the N 2 output

samples from the de-quantizer are multiplied by the orthogonal matrix cT® C T. The fusion of the

scaling factors of the transform (inverse) transform stage into the qnantization (de-quantization)

stage does not require additional computation, since division operations have to be performed in

the quantization process anyway. An example of a quantization stepsize template that corresponds
to the all-one uniform quantization template for an 8 x 8 ICT is given in Figure 2. A more detailed

discussion on incorporating the scale-factors of the transform process as part of the scalar quantizer

can be found in [7]. This relaxation of the orthonormal requirement to orthogonal requirement

play a crucial role in allowing one to "integerize" a transform coding scheme as we will see in the
next section.

4. Mathematical Properties of ICT

ICT and DCT are closely related. Let C and A be the respective ICT and DCT N x N matrices.

A = [ak,_] is an orthonormal matrix (i.e. AA _ = I) defined as follows:

1

akn-V_ k=O, O_n_N-1

 (2n+l)k= cos 2N 1 <k<N-1, 0<n<N-1 (3)

Using A as a template, the ICT matrix C = [ck,_] is an orthogonal matrix (i.e. CC t = A, where

A is a diagonal matrix) with the following properties:

1. Integer property: ck_ are integers for 0 _< k, n _< N - i.

2. Orthogonality property: Rows (or columns) of C are orthogonal.
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3. Relationshipwith DCT: (i) sgn(ckn) = sgn(ak,_) /or 0 _< k, n < N - 1. (ii)If ak,, = ast, then

Ck,_ = cat for O < k,n,s,t <N-1.

The integer property eliminates real multiplication and real addition operations. The orthogonality

property assures that the inverse ICT has the same transform structure as the ICT. Notice that

C is only required to be orthogonal, but not orthonormal. However, any orthogonal matrix can

be made orthonormal by multiplying it by an appropriate diagonal matrix. This operation can

be incorporated in the quantization (dequantization) stage of the compression (decompression)

scheme, thus sparing the ICT (inverse ICT) transform from floating-point operations, and at the

same time preserving the same transform structure as in the floating-point DCT (inverse DCT).

The relationship between ICT and DCT guarantees efficient energy packing and allows the use of
some fast DCT technique for the ICT.

5. A General Procedure to Construct an ICT Matrix

A general procedure to construct an N × N ICT matrix is presented in this section. For any N x N

ICT matrix, this construction is done on the ground prior to implementation. The DCT matrix is

used as a template to generate an ICT matrix. The procedure is described as follows:

1. Generate the N x N DCT matrix A.

2. Construct an N × N matrix C by substituting the N possible absolute values in A with N

symbols, and preserve the signs of the elements in A.

3. Evaluate CC t, and generate a set of independent algebraic equations which forces CC t to be

a diagonal matrix.

4. Find a set of N numbers which satisfies the set of algebraic equations generated in part 3.

Since for a given N, there are N(N - 1) non-diagonal elements in C, part (3) gives N(N - 1)/2
quadratic equations. This set of equations is too large to be handled easily except for small N.

The most tedious part of the above procedure is part 4, that is finding N integers satisfying the set

of non-linear algebraic equations generated in part 3. By using advanced symbolic manipulation

tools like Mathematica [8], the effort to generate the set of algebraic equations in part 3 and solving
them in part 4 can be greatly reduced. In fact Mathematica was used in an interactive manner to

generate a 4 × 4, an 8 x 8 and a 16 x 16 ICT matrices as described in the next section.

In order to obtain good compression performance one requires the set of N- 1 integers to have a sim-

ilar magnitude profile to the N- 1 floating-point elements of A. Furthermore, if the multiplication-

free property is desired, one has to restrict the set of N integers to be small integers, so that any

multiplications with the matrix elements can be replaced by a small number of adds and shifts.

. Examples of ICT Matrix Construction

Using the construction techniques described in the previous section, we generated a 4 × 4 (Figure

1), an 8 x 8 (Figure 2), and a 16 x 16 (Figure 3) ICT matrices. The 4 x 4 ICT matrix has
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elementswhicharepowersof 2. The8 x 8 ICT matrix is thesameasthe examplegivenin Cham's
paper[2],whoseelementsareeitherpowersof 2, or aresumsof two powersof 2.

7. Compression Performance of the ICT Schemes

Weappliedour implementationof the4 × 4 and the 8 x 8 ICT schemesfor the GalileoS-Band
ContingencyMission. Wecompresseda typical planetaryimagemiranda (moon of Uranus). For

the purpose of comparison, we also compressed the same image using the JPEG schemes. The root-

mean-square-error (RMSE)versus compression ratio performances of these schemes on miranda

are given in Figure 4. These simulation results indicate that the difference in rate-distortion

performance resulting from using the floating-point DCT or the ICT is unnoticeable.

The ICT schemes are also being considered for compression of non-image data like the multi-

spectral plasma wave spectrometer (PWS) data. We compressed some typical PWS data files by a

factor of 10, which results in lossy reconstructed images that can still be useful for PWS analysis.

8. LZW Overview

The universal lossless LZW algorithm used in this mission is based on the algorithm proposed by

Terry A. Welch[3].

The LZW algorithm is an adaptive compression scheme which converts a variable length string

into a fixed length string. The algorithm is adaptive in the sense that it uses a dynamic lookup

dictionary table. The table is dynamic because it initially starts with an empty table of symbol
strings and the algorithm fills this table during the compression and decompression process. The

table is thus adapted to the incoming data. Because of this adaptation, the algorithm requires no

prior information on the data characteristics of the incoming data.

The LZW implementation of the compression and decompression scheme is based on Welch's

paper[3] with modifications to handle multiple dictionary tables, a more efficient search algorithm

and the ability to detect certain errors. Itowever, it must be noted that there is an error in the

decompression algorithm described in Welch's paper. If followed exactly, the decompressed data

will be garbled at random points. This error is located in the "special case" part of decompression

algorithm defined in Welch's paper. Instead of a direct output of the decoded final character, this

character should be pushed onto the stack.

Our contribution in this paper is to develop an LZW scheme that is efficient in terms of speed and

compression performance and at the same time satisfies the stringent computation and memory

constraints of the spacecraft.

9. LZW Algorithm

The LZW algorithm is organized around a translation table, referred to as a dictionary table that

maps strings of input symbols into fixed length codes. In this particular mission, the code size

used is 9-bits, which translates into a table size of 512. The dictionary is used as a lookup table in

104



both the compressionanddecompressionand is generatedasthe data is beingprocessed.If the
requiredinformationis not in the presentstateof the table,a newentity is addedto the table,
thusa dynamiclookup table.

The compression speed is very sensitive to the search of the dictionary table in the main loop of

the LZW algorithm. The search is used to determine if the required information is in the table.

Since the entire LZW algorithm is based on the state of this table, it is important to develop a

fast search routine that is also efficient in memory usage because of the memory constraint of the

spacecraft.

9.1 The Dynamic Lookup Dictionary Table

The size of the dictionary has a direct bearing on the memory requirements and execution time

of the implemented program. The proposed dictionary size for this mission is 512. This number is

a compromise between optimal compression and the memory constraint on board the spacecraft.

The increase in dictionary size from 512 to 1024 does not produce a great enough compression gain

to justify choosing the larger dictionary size.

10. Features of the Galileo LZW Implementation

The LZW algorithm was implemented with features that were not discussed in Welch's paper. The

implementation can concurrently compress multiple independent streams of data using multiple

dictionaries while using the a minimal amount of memory without compromising execution time.

10.1 Multiple Dictionary Tables

The multiple dictionary table feature was added because the spacecraft transmits different types

of data requiring lossless compression. Examples of these types of data are telemetry, engineering

and instrument data. Using the multiple dictionary approach, it is possible to segregate these data

streams without requiring the compression algorithm to finish up on one stream and start another

table. The program can switch back and forth between the data streams and use the dictionary

table that is assigned to that data stream.

10.2 The Hashing Algorithm

The search portion of the LZW algorithm is the most time consuming, thus it was necessary to

design a search procedure that was both efficient in memory and in execution time. We employ a

simple yet efficient hashing algorithm to perform the search. Normal implementation of hashing

uses dynamic memory and a linked list, but in our implementation, two fixed arrays are used. This

is to save memory and to save overhead time in keeping track of the linked list using dynamic

memory. The size of the first array is equal to the dictionary size and the second array would equal

the difference between the dictionary size and the alphabet size. Thus it would require one array

of size 256 and the second array of size 512 for a dictionary size of 512. See Table 1 for hashing

performance.
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10.3 LZW Performance on Near-Infrared Mapping Spectrometer (NIMS) Data

We have obtained NIMS data produced by Galileo to test the performance of the LZW implemen-
tation. See Table 2.

10.4 LZW Performance on Selected Text Data

A text file was produced and used to show the performance of the LZW algorithm with various

table sizes. (See Table 3.) From the performance, we can see that the table size proposed is a good

compromise between optimal compression and memory usage.
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1 1 1 1
2 1 -1 -2
1 -1 -1 1
1 -2 2 -1

Figure I a 4 x 4 ICT Matrix

1 1 1 1 1 1 1 1
5 3 2 1 -1 -2 -3 _ -5
3 1 -1 -3 -3 -1 1 3
3 -1 -5 -2 2 5 1 -3
1 -1 -1 1 1 -1 -1 1

2 -5 1 3 -3 -1 5 -2
1 -3 3 -1 -1 3 -3 1
1 -2 3 -5 5 -3 2 -1

Figure 2a an 8 x 8 ICT Matrix

8 25 18 25 8 25 18 25
25 78 56 78 25 78 56 78
18 56 40 56 18 56 40 56
25 78 56 78 25 78 56 78

8 25 18 25 8 25 18 25
25 78 56 78 25 78 56 78
18 56 40 56 18 56 40 56
25 78 56 78 25 78 56 78

Figure 2b the Quantization Template of 2a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
42 38 37 32 22 19 10 4 -4 -10 -19 -22 -32 -37 -38 -42
10 9 6 2 -2 -6 -9 -10 -10 -9 -6 -2 2 6 9 10
38 22 4 -19 -37 -42 -32 -10 10 32 42 37 19 -4 -22 -38

2 5 -5 -2 -2 -5 5 2 2 5 -5 -2 -2 -5 5 2
37 4 -32 -38 -10 22 42 19 -19 -42 -22 10 38 32 -4 -37

9 -2 -10 -6 6 10 2 -9 -9 2 10 6 -6 -10 -2 9
32 -19 -38 4 42 10 -37 -22 22 37 -10 -42 -4 38 19 -32

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
22 -37 -10 42 -4 -38 19 32 -32 -19 38 4 -42 10 37 -22

6 -10 2 9 -9 -2 10 -6 -6 10 -2 -9 9 2 -10 6
19 -42 22 10 -38 32 4 -37 37 -4 -32 38 -10 -22 42 -19
5 -2 2 -5 -5 2 -2 5 5 -2 2 -5 -5 2 -2 5

10 -32 42 -37 19 4 -22 38 -38 22 -4 -19 37 -42 32 -10
2 -6 9 -10 10 -9 6 -2 -2 6 -9 10 -10 9 -6 2
4 -10 19 -22 32 -37 38 -42 42 -38 37 -32 22 -19 10 -4

Figure 3 a 16 x 16 ICT Matrix
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TABLE 1 Hashing Comparison

Data files used are 256x256 = 65536 bytes planetary image files.

Compares Per Input Byte (Table 1)

I Hash Algorithm Search I
I TableSize I

File I 512 1024 I

dl 3.2436 3.7604

f2 2.5246 3.0067

h2 2.5816 3.1000

12 3.6721 4.8428

Sequential Search
TableSize

512

76.0222

73.0339

74.2097

93.6538

1024

184.5167

178.2090

181.3555

233.7537

TABLE 2 Nims Data Performance

COMPRESSION RATIO (Table 2)

Data Orientation Table Size = 512 Table Size = 1024

Horizontal Scan 2.60 2.69

Vertical Scan 2.59 2.63

Mirror Scan 2.27 2.35

Original Data 2.45 2.51

TABLE 3 Text Data Performance

Sample Text File Size = 5390 bytes (Table 3)

Table Size Compression Ratio Tables Used
512 1.36 14

1024 1.52 4

2048 1.59 2
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DATA COMPRESSION FOR THE CASSINI

RADIO AND PLASMA WAVE INSTRUMENT

W.M. Farrell, Code 695, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

D.A. Gurnett, D.L. Kirchner and W.S. Kurth, Department of Physics

and Astronomy, The University of Iowa, Iowa City, IA 522242, U.S.A.

L.J.C. Woolliscroft, Department of Automatic Control and Systems

Engineering, The University of Sheffield, Sheffield, S 1 3JD, U.K.

Abstract. The Cassini Radio and Plasma Wave Science experiment will employ data compres-

sion to make effective use of the available data telemetry bandwidth. Some compression will be

achieved by use of a lossless data compression chip and some by software in a dedicated 80C85

processor. A description of the instrument and data compression system are included in this

report. Also, the selection of data compression systems and acceptability of data degradation

is addressed.

1. Introduction

The Radio and Plasma Wave Science (RPWS) experiment is being built by an international

team led by the University of Iowa for the Cassini spacecraft. This experiment will study a

wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also

make scientifically important measurements during the cruise phase and at other encounters. A

particular feature of the data from wave receivers is that they have a potentially vastly greater

volume than the spacecraft telemetry link and onboard data handling systems are able to handle

and transmit to Earth. Thus event selection, data selection and onboard data compression

techniques are important for such instruments. Historically data selection has been based

on hardware signal processing but recently the use of onboard software has been considered

important 1'2. The RPWS instrument has one processor dedicated to data compression tasks. In

this paper we briefly outline the scientific data requirements for RPWS, the RPWS instrument

hardware including the data compression processor (DCP) and potential DCP software structure.

We then present some results of data compression tests and finally discuss the present planning

for the implementation of data compression in the RPWS instrument. We note, in particular, that

the complexity in the number of RPWS modes will impact on data compression yet the priority

for compression will be directed at the producers of the largest data volumes.
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2. The Scientific Requirements

Figure 1 shows the typical signal levels for the various noises which can be expected around

Saturn 3. A simple calculation would show that to measure all of these fully one would need - (3

antennae) x (2 x 108 samples) x 16 bps or approximately 10 Gbps for the electric components

(assuming 100 MHz bandpass), and (3 antennae) x (2 x 105 samples) x 16 bps or approximately

10 Mbps for the magnetic components (assuming 100 kHz bandpass) of the wave-field. This

calculation assumes that the dynamic range can be adequately quantized using a 16 bit word

length. This naive and simplistic calculation does not include the telemetry allowance for a

Langmuir probe or a sounder both of which are in the RPWS instrument. Typical data rates

available for RPWS are a few kbps, i.e. a factor of some 106 lower than could be used. Thus

the need for data compression.
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Figure 1 -- The spectral characteristics of the various emissions expected to
be detected during the Cassini mission to Saturn. Without any compression or
selection, nearly 108 bps are required to return this information, which is a much
larger value than the telemetry allows.

Clearly the RPWS team would be unwise (and unlikely to get support to try) to build sensors

with such a capacity to over-produce data. In the next section we describe the RPWS instrument

block diagram.
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3. The RPWS Instrument and Data Compression Processor

Figure 2 is a simplified block diagram showing the current RPWS configuration. Three electric

field antennas (configured as either a dipole plus a monopole or three monopoles), three

orthogonal magnetic search coils and a Langmuir probe are the sensors. Two electric antennas

can be connected to an active plasma sounder. The main signal processing blocks are the high

frequency receiver (HFR), the medium frequency receiver (MFR), the five channel waveform

receiver (5CWF), a digital wideband receiver (WB) and a Langrnuir probe (LP). Both the HFR

and MFR contain internal averaging and intensity compression circuitry, thereby reducing the

onboard data handling requirement. In contrast, the 5CWF and WB receivers sample very

fast, each near their respective Nyquist frequencies. Considering the WB receiver, as many as

160k samples per second are obtained in some modes. The data rates available for the RPWS

investigation is around 2kbps in normal operation, but can be increased to greater than 100 kbs

at predetermined times.
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Figure 2 -- A block diagram of the Cassini Radio and Plasma Wave (RPWS)
experiment. Note that the Data Processing Unit (DPU) accepts signals from five
different receivers. Due to the very different types of data, compression systems
cannot be generic, but must be specifically tailored for each receiver.
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Outputsfrom the signalprocessingblocksaretakento eitherthe high rate dataprocessingunit
(HRP) or the low ratedataprocessingunit (LRP). Theseprocessorsarepart of the instrument
block labeled as the "Data ProcessingUnit" in Figure 2. A more detailed diagramof the
DPU layout is shownin Figure 3. The HFR andMFR datawill be processedby the low rate
processor. In contrast,the faster-sampling5CWF, LP, andWB datawill be processedby the
high rate processor. The high rate data processing unit contains a dedicated compression chip

(produced by JPL using Rice's split-sample scheme) which can compress the data by a factor

of approximately 2. This chip will be primarily for data from the digital wideband receiver.

Other forms of data compression and data selection can be performed in the data compression

processor (DCP). The DCP is connected by a single bus to both the high and low rate data

processing units. This bus can only handle communications between two of the three processors

at any particular time. The DCP is an 80C85 processor with 2k bytes of PROM and 64k bytes

of RAM. It also includes a 16 x 16 multiply and accumulator device (Marconi MAR 7010). The

DCP will perform data compression on the outputs from the various receivers, in scenarios that

will be described below. Compressed data from the DCP is sent to the low rate processor where

it is packetized and returned. Ultimately the spacecraft data interface is with BIU (bus interface

unit) which is connected to the low rate processor.

DATA PROCESSINGUNIT

f Low Rate Data
Processing Unit

(LRP)

HFR MFR

Data

Compression
Processor

(DCP)

High Rate Data
Processing Unit

(HRP)

5CWF LP WB

Figure 3 m A specific block diagram of the DPU. Note that internal to the HRP
is a Iossless compression chip. Besides this capability, there is a dedicated data
compressor (DCP) that performs both selection and compression tasks.
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4. Algorithm Tests on Possible Compressors

In this section we present the results of some simulations and tests of data compression on various

sources of data. These include tests of compression upon data obtained from a ground-based

lightning sferic radio detection system, along with simulations of compression using Voyager

radio wave data.

For the detection of VLF signals associated with lightning discharges, a ground-based waveform

capture system was recently developed at GSFC. The system examined waveforms obtained

in the frequency range between 1-30 kHz, capturing the most active interval via a "smart"

selection process. Figure 4 shows a captured VLF waveform generated by a cloud-to-ground

return stroke occurring on 28 August 1992. During this particular day, storms associated with the

remanent of Hurricane Andrew passed near the observation site (i.e., about 50 km). The "smart"

selection process identified this particular interval of time as "active" and saved the corresponding

receiver output in memory. The information is further compressed using an adaptive quantization

algorithm, the results of which are shown in the middle panel. In this compression scheme, the

original 16-bit words are requantized to 4-bit words using 16 quantization steps equally-spaced

between the minimum and maximum waveform values. This algorithm is very quick, yielding

moderate, synchronous compression. Although the compression, by nature, is lossy, there is

little loss of essential information concerning the lightning-generated waveform. The bottom

panel of the figure displays a simple model of a typical VLF waveform from cloud-to-ground

return strokes 4 for comparison.
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Figure 4 -- A captured VLF wave-
form from a groundbased receiver that
features a data compression system.
Shown is the emission generated by
a cloud-to-ground return stroke occur-
ring on 28 August 1992, observed
between 1-30 kHz. A compressed
version of the waveform using adap-
tive quantization is also shown. Both
waveforms compare well with modeled
results.

Time (msec)
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Thereareother methods besides selection and adaptive quantization for the compression of data

in the form of time series. We now present a couple examples of these methods using the

data from the Voyager 2 encounter with the planet Neptune. Specifically, the data presented is

from the planetary radio astronomy (PRA) experiment onboard the spacecraft. This experiment

consists of a sweep frequency receiver operating between 1.2 kHz and 40 MHz 5. The data from

the closest approach period on 25 August 1989 is used in the study.
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Figure 5 -- A time series from the Voyager planetary radio astronomy (PRA)
experiment (top curve) and its reconstruction following its compression using a 2-bit
per sample adaptive delta modulation system (bottom curve).

Figure 5 shows the PRA measurements obtained during a 25 minute period just prior to closest

approach to the planet. During this period, a time-averaged signal associated with dust impacts

was detected by the receiver, along with a smooth emission that persisted for many hours. In

the figure, the original data is presented in the top curve. The bottom curve is the same time

series reconstructed following the application of an adaptive delta modulation (ADM) system

commonly used in speech compression 6. The ADM technique is relatively fast and yields a

synchronous, 2-bit per sample output. Note that there is a reasonably good correspondence
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betweenthe actual and ADM time series. Specifically,all the signalsof scientific relevance,
suchasthe dust impactsand smoothemission,arecapturedby this system.
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Figure 6 -- A time series from the Voyager planetary radio astronomy (PRA)
experiment (top curve) and its reconstruction following its compression using a
Walsh-Hadamard transform/coefficient selection process (bottom curve).

J

In the event that there are very low data rates and available CPU time, then transform coding

may be a possible means of compressing the data. Figure 6 shows a time series from the

Voyager PRA experiment (top curve) along with reconstructed signal using the Walsh-Hadamard

transform (WriT). The transform, itself, does not compress the data. However, once in transform

space, selection of the most intense coefficients is performed. After selection, the coefficients are

requantized to three bits and returned using run length encoding techniques for efficient packing

in the telemetry stream. The reconstructed time series following these processes is shown in the

bottom curve of Figure 6. This transform system results in compression down to about 2 bits per

samples. As evident in the figure, there are some minor distortions in the WHT time series that

result from the requantization process. However, the relevant scientific information is returned.
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5. Compression Plans for RPWS

The implementation of data compression in RPWS is not yet fully decided. It is clear that the

DCP will not have sufficient capacity in either processing power or memory for a extended

suite of compression algorithms. Neither do we consider that it is possible to employ a single

algorithm for all formats of input data, our experience suggests that algorithms need to be selected

according to the nature of the data being considered. Thus, testing on the ground prior to flight

will have to be performed to find the proper algorithms suitable for the different data types.

An initial approach to the Cassini RPWS compression is to compress the data from the source

which produces the greatest volume of data. For example, compression and selection of events

associated with the fast-sampling WB system is of primary importance due to the large data

volume created by this instrument. When high rate telemetry modes (> 100 kbs) are available,

the data can be returned directly or undergo fast lossless compression. The dedicated compression

chip produced by JPL should accomplish the latter task. However, when data rates are low (<

10 kbs), data selection and lossy compression are required. One possible scenario is a selection

and simple requantization process similar to that associated with Figure 4.

The DCP will also process the 5CWF and LP data. Like the WB experiment, these data

sets consists of waveform measurements, but with much lower temporal resolution. Since the

information rate is lower for these two receivers, the use of CPU-intensive compression systems

may be possible. For example, it is desirable to transform the output from the 5CWF receiver

in order to obtain spectral information. Compression in transform space may then be possible.

The HFR and MFR return spectral information averaged over a predefined time interval (usually

averaged values in 10's of milliseconds). The data points are correlated in both frequency and

time, thus a number of compression systems are possible. However, the compression applied is

dependent upon the data sets usage. If radio spectrograms of limited resolution are created as

the final output, lossy compression with large compression ratios may be used. Adaptive delta

modulation is one possible system. Since the operation times of these receivers are relatively

slow, transform coding and coefficient selection may also be possible within the constraints of the

processor. However, if measurements are going to be crosscorrelatated, exact values are needed,

and these can only be realized using lossless compression. As described below, the final usage

of the data product on the ground is another driver in the selection of the compression system.

6. Discussion

The discussion of the use of data compression for scientific data raises the question of what, if ,,k
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any,degradationin thequalityof thedatais acceptable.For wavedatawherethedatain question
area time seriesof field amplitudemeasurementsit may beappropriateto guaranteethat the
additionaluncertainty,or noise,in the data is below the noise level of the receiver,typically
by around3dBor so lower. For frequencyspectrathe scientifically importantinformationare
usuallyplottedon a grey-scaleor colour scaledplot with a restrictedquantizationof the number
of levels. For thesedata,then,a datacompressionto a word lengthsomewhatlonger than that
neededto codethenumberof colour levelswill usuallybeentirelyadequate.When,for example,
polarizationanddirectionsof the incomingwavearebeingmeasuredthen it is importantnot to
haveanydatadegradation.In general,thedatacompressiontestsby simulationsshouldshowthat
no scientificresult is changedor beanartefactof thecompressionstrategywhich wasselected.

It is evident that the choice of datacompressionsystemdependsupon the receiver and its
associateddataproduct,DCPprocessingtime, andthefinal datausageon the ground.Choosing
thecorrectcompressionsystemsfor eachreceiverwill bedifficult, but might beperformedwith
the useof logic diagrams,like that shownin Figure 7. Illustratedis the possiblecompression
scenariofor the MFR dataproduct. Note that very different compressionsystemscould be
applied,dependinguponthedata'sfinal usage.In situationwheretherearemultiplepathsto the
samefinal visualizationproduct,one pathwill be selectedbaseduponthe compressabilityand
speedof the system.For example,to createfrequencyversustime spectrograms,adaptivedelta
modulation,transformcoding, or adaptivequantizingarejust a few of the possiblescenarios,
given an infinite amountof processingstrength. In reality, the RPWS systemusesan 8085
processor,thusonly themost simplecompressionis possible.Thus,adaptivequantizingor delta
modulationmight may be selectedin lieu of a transformcoding system.

COMPRESSIONSCENARIO:MFR

_hannel spectral sweeps

bps

Figure 7 -- An illustration of the logic that will be implemented to select the data
compression systems for the DCP.
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Conclusions

Thisbrief reportgivesanoverviewof theCassiniRPWSdataprocessingsystem.At this time,the
hardwareportion is well definedandis selectedbaseduponweight,power,anddevelopmentcosts
considerations.The correspondingsoftwareportion is morecomplicated,with manydifferent
scenariospossibledependingupon the applicationof the data on the ground. Future work
includesalgorithm selection,testing,anddevelopmentfor the DCP.
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